HARMFUL ALGAL BLOOMS AND HYPOXIA IN THE UNITED STATES

Ŀ

A REPORT ON INTERAGENCY PROGRESS AND IMPLEMENTATION

PRODUCT OF THE

Interagency Working Group on Harmful Algal Bloom and Hypoxia Research and Control Act

March 5, 2018

DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION WASHINGTON, D.C. 20502

March 5, 2018

Dear Colleagues:

I am pleased to transmit to you *Harmful Algal Blooms and Hypoxia in the United States: An Interagency Progress and Implementation Report.* This report to Congress produced by the National Oceanic and Atmospheric Administration, in coordination with the Interagency Working Group on the Harmful Algal Bloom and Hypoxia Research and Control Act (IWG-HABHRCA) demonstrates how this Administration is enhancing the safety, security, and quality of life for the American people. Addressing these issues not only improves the well-being of hardworking Americans, but also reduces the negative economic impacts from declines in commercial fishing, recreation, and tourism revenue that may occur during these events.

The 2014 reauthorization of the Harmful Algal Bloom and Hypoxia Research and Control Amendments Act (HABHRCA 2014; P.L. 113-124) acknowledges continued concerns related to harmful algal blooms (HABs) and hypoxia, emphasizes the need for expanded and ongoing monitoring and forecasting, extends the scope of the legislation to include freshwater HABs and hypoxia, and recognizes the need for further coordinated Federal action to address these issues. Specifically, the legislation calls for the publication of a report that describes the proceedings of the IWG-HABHRCA, as well as the progress made on implementing the recommendations put forth in *Harmful Algal Blooms and Hypoxia in the United States Comprehensive Research Plan and Action Strategy: An Interagency Report* (RPAS). The RPAS was published on February 16, 2016, with the intent of "reducing, mitigating, and controlling hypoxia and harmful algal blooms in the United States."

In addition, HABHRCA required a separate plan for "reducing, mitigating and controlling hypoxia and harmful algal blooms in the Great Lakes". The IWG-HABHRCA published and transmitted the *Harmful Algal Blooms and Hypoxia in the Great Lakes Research Plan and Action Strategy: An Interagency Report* on August 24, 2017. After submitting the plan, HABHRCA requires biennial progress reports on the activities toward achieving the objectives of the plan.

This report fulfills these two legislated requirements.

Sincerely

RDML Tim Gallaudet, Ph.D., USN Ret. Assistant Secretary of Commerce for Oceans and Atmosphere and Acting Under Secretary of Commerce for Oceans and Atmosphere

About the National Oceanic and Atmospheric Administration

NOAA is an agency that enriches life through science. Our reach extends from the surface of the sun to the depths of the ocean floor as we work to keep citizens informed of the changing environment around them.

From daily weather forecasts, severe storm warnings, and climate monitoring to fisheries management, coastal restoration and supporting marine commerce, NOAA's products and services support economic vitality and affect more than one-third of America's gross domestic product. NOAA's dedicated scientists use cutting-edge research and high-tech instrumentation to provide citizens, planners, emergency managers and other decision makers with reliable information they need when they need it.

About this Document

This document was developed by the Interagency Working Group on the Harmful Algal Bloom and Hypoxia Research and Control Act. The IWG-HABHRCA is organized under the National Science and Technology Council; Committee on Environment, Natural Resources, and Sustainability; Subcommittee on Ocean Science and Technology. The report is intended to meet the statutory requirements to address HABs and hypoxia, as prescribed by that Act.

This report should be cited as: D'Anglada, L., Gould, C., Thur, S., Lape, J., Backer, L., Bricker, S., Clyde, T., Davis, T., Dortch, Q., Duriancik, L., Emery, E., Evans, M.A., Fogarty, L., Friona, T., Garrison, D., Graham, J., Handy, S., Johnson, M.-V., Lee, D., Lewitus, A., Litaker, W., Loeffler, C., Lorenzoni, L., Malloy, E.H., Makuch, J., Martinez, E., Meckley, T., Melnick, R., Myers, D., Ramsdell, J., Rohring, E., Rothlisberger, J., Ruberg, S., Ziegler, T. (2018). "Harmful Algal Blooms and Hypoxia in the United States: A Report on Interagency Progress and Implementation." National Oceanic and Atmospheric Administration.

Copyright Information

This document is a work of the United States Government and is in the public domain (see 17 U.S.C. §105). Subject to the stipulations below, it may be distributed and copied with acknowledgement to NOAA. Copyrights to graphics included in this document are reserved by the original copyright holders or their assignees and are used here under the government's license and by permission. Requests to use any images must be made to the provider identified in the image credits or to NOAA if no provider is identified.

Printed in the United States of America, 2018.

Table of Contents

Abb	reviations	6		
Exec	cutive Summary	7		
I.	Introduction	10		
	a. What are HABs and Hypoxia?	10		
	b. Harmful Algal Bloom and Hypoxia Research and Control Act	11		
	c. Purpose and Scope of this Report	11		
	d. Summary of Proceedings the Interagency Working Group on HABHRCA	12		
II.	Progress Made on Implementing the Action Strategy	14		
III.	Additional Activities Carried Out Under the Program, Including the Regional and Subregional Parts of the Action Strategy	26		
IV.	Need to Revise or Terminate Research and Activities under the Program	32		
V.	Budget Related to HAB and Hypoxia Activities under the National Program	32		
Con	clusion	32		
App	endix 1. IWG Anticipated Actions on HABs and Hypoxia from 2016 to 2020	35		
App	endix 2. Actions to Strengthen and Integrate New and Existing Monitoring Programs	63		
App	ppendix 3. Actions to Improve Predictive Capabilities for HABs and Hypoxia			
	ix 4. Actions to Improve Stakeholder Engagement and Socioeconomic anding			
	endix 5. Actions to Expand Collaborations in Research, Management, and Policy- ated Arenas	141		
Refe	erences	148		
Glos	ssary of Terms	152		

Abbreviations

ARS	Agricultural Research Service					
BOEM	Bureau of Ocean Energy Management					
CASPER	Community Assessment for Public Health Emergency					
	Response					
CCL	Contaminant Candidate List					
CDC	Centers for Disease Control and Prevention					
CPE	Comprehensive Performance Evaluation					
CRMs	Certified Reference Materials					
CyAN	Cyanobacteria Assessment Network					
ERDC-EL	USACE Engineer Research and Development Center					
FDA	Food and Drug Administration					
FPMN	Food and Drug Administration Freshwater Phytoplankton Monitoring Network					
GLRI	Great Lakes Restoration Initiative					
HAB	Harmful Algal Bloom					
HABHRCA	Harmful Algal Bloom and Hypoxia Research and Control Act					
HABs	Harmful Algal Blooms					
IWG-HABHRCA	Interagency Working Group on HABHRCA					
NARS	National Aquatic Resource Surveys					
NASA	National Aeronautics and Space Administration					
NGOMEX	Northern Gulf of Mexico					
NIEHS	National Institute of Environmental Health Sciences					
NIFA	National Institute of Food and Agriculture					
NLA	National Lakes Assessment					
NOAA	National Oceanic and Atmospheric Administration					
NRCS	Natural Resources Conservation Service					
NSF	National Science Foundation					
NSTC	National Science and Technology Council					
OHHABS	One Health Harmful Algal Bloom System					
PMN	Phytoplankton Monitoring Network					
R&D	Research and Development					
RPAS	Harmful Algal Blooms and Hypoxia in the United States					
	Comprehensive Research Plan and Action Strategy: An					
	Interagency Report					
STEM	Science, Technology, Engineering, and Mathematics					
UCMR	Unregulated Contaminant Monitoring Rule					
USACE	United States Army Corps of Engineers					
USDA	United States Department of Agriculture					
USEPA	United States Environmental Protection Agency					
USGS	United States Geological Survey					

Executive Summary

Researchers and policymakers recognize harmful algal blooms (HABs) and hypoxia (lowoxygen conditions) as some of the most critical water quality issues affecting our nation's waterways: freshwater and marine alike. Impacts include losses in income from declines in commercial fishing, recreation, and tourism; animal and human exposure and illness from contaminated water or seafood; and expenses related to monitoring, control, and management, including water treatment (Bingham et al., 2015).

Per the requirements of Section 603(j) of the 2014 reauthorization of the Harmful Algal Bloom and Hypoxia Research and Control Act (HABHRCA 2014; *Public Law 113–124*), this document presents to Congress the progress made by Federal agencies to implement the recommendations laid out in *Harmful Algal Blooms and Hypoxia Comprehensive Research Plan and Action Strategy: An Interagency Report* ("RPAS"). It also discusses the activities carried out under the national HABs and hypoxia program described in Section 603(A)(4) of HABHRCA 2014 (the "Program"), including the regional and sub-regional parts of the Action Strategy. In addition, the report fulfills the requirements of Section 605(b)(3)(I) by providing a report on activities toward achieving the objectives of the *Harmful Algal Blooms and Hypoxia in the Great Lakes Research Plan and Action Strategy: An Interagency Report* published on August 24, 2017. Furthermore, the report highlights Federal efforts, and emphasizes the widespread collaboration to address the causes and effects of HABs and hypoxia throughout the United States, including through the proceedings of the Interagency Working Group on HABHRCA (IWG-HABHRCA).

Since the publication of the RPAS, the Federal agencies in the IWG-HABHRCA have made important progress in addressing the causes of HABs and hypoxia, and in helping to mitigate

their impacts. The Federal agency members of the IWG have been working with communities, resource managers, and other stakeholders to minimize impacts during an event, and to be prepared well in advance through forecasts, monitoring, policies, and other means. These achievements include:

Increased understanding of human-health risks from exposure to HABs, and improved disease surveillance for human and animal exposure, illnesses, and death

- Conducted health-effects assessments to recognize human-health risks from exposure to HABs.
- Launched a one-health surveillance system (OHHABS) to collect data on individual human and animal cases of illnesses from HAB-associated exposures, as well as environmental data about HABs.

Microcystis bloom, Ohio River, Cincinnati, OH (Credit: USEPA/ORD).

Improved understanding and management of the factors responsible for the occurrence and distribution of HABs and hypoxia

- Led the <u>Great Lakes Water Quality Agreement</u> (GLWQA), <u>Annex 4 on Nutrients</u>, a binational research and modeling effort with states and Canada to develop and adopt phosphorus reduction targets that will minimize HABs and hypoxia in Lake Erie. In 2017, the USEPA and four states released a draft Domestic Action Plan for Lake Erie that identifies how the United States will achieve its phosphorus reduction goals.
- Increased efforts to minimize the impacts of HABs and hypoxia, such as supporting states in developing nutrient criteria for water quality programs, supporting implementation of best management practices such as use of reactive or filter mats to act as a sorbent for soluble and total phosphorous from run off, and protecting drinking water by optimizing the use of oxidants and powdered activated carbon during early stages of drinking water treatment.
- Released strategy and began implementing a new \$41 million <u>Western Lake Erie Basin</u> <u>Initiative conservation effort</u> to reduce nutrient losses from agricultural lands. Established a new Demonstration Farm Network in Ohio to demonstrate and assess practices, and educate stakeholders on successful conservation practices.
- Documented water quality effects of agricultural conservation in fields and watersheds around the nation, developed understanding of nutrient transport and developed innovative technologies for reducing nutrient loss, now used in domestic action plans and watershed implementation plans.
- Released <u>assessment of the effects of conservation on cultivated croplands in the Western</u> <u>Lake Erie Basin</u>, which has been used to inform conservation initiatives and domestic action plans.
- Reduced nutrient and sediment field losses through continued implementation of conservation practices, and avoiding, controlling, and trapping conservation systems on agricultural lands.
- Assessed the effects of climate change on HAB species along U.S. coastlines.

Strengthened and integrated new and existing monitoring and predicting capabilities for HABs

- Included cyanotoxins in drinking water monitoring programs.
- Improved monitoring efforts, including restoring and refining the Gulf of Mexico HABs forecast and the Pacific Northwest HAB bulletin for use by shellfish harvesters and other users; launched third-generation sensor systems, including autonomous underwater sensors for HAB toxins; and monitored small streams at edges of agriculture fields and nutrients in bays and the Great Lakes.

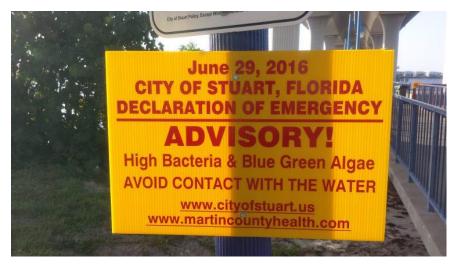
- Began developing a Cooperative Gulf of Mexico Hypoxia Monitoring Program.
- Advanced transition-to-operational capacity HAB (Lake Erie, Pacific Northwest, Gulf of Maine) and hypoxia (Gulf of Mexico and Chesapeake Bay) forecast models.

Algal bloom off Northern California's "Lost Coast" in 2014 (Credit: NOAA).

Developed effective guidance and recommendations for HABs for the protection of public health in drinking and recreational waters

- Developed health-based guidelines for cyanotoxins in drinking water.
- Developed guidance documents on risk communication and management strategies for water utilities and recreational managers on cyanotoxins.

Improved stakeholder communications, and expanded collaborations in research, management, and policy-related arenas


- Established a collaborative network of Gulf of Mexico hypoxia scientists and fisheries managers (state and Federal) to ensure that actionable findings on hypoxia impacts on fisheries are applied to management strategies.
- Collaborated with stakeholders, including farmers, the tourism industry, water resource and utility managers, academics, Federal agencies, nongovernmental organizations, the public, and others. This was done via webinars, public meetings and workshops, and individual discussions.

I. Introduction

What are HABs and Hypoxia?

HABs are caused by certain types of microscopic or larger plant-like cyanobacteria or algal species. Algae and cyanobacteria are considered to be the basis of most freshwater and marine food webs. Though usually benign, a small subset of these microalgae and cyanobacteria can form large blooms that adversely affect human and animal health and cause significant economic losses to local economies. They can produce toxins that kill fish, shellfish, livestock and wildlife, or sicken people if they ingest sufficient amounts of toxins (Byappanahalli et al., 2003; Carmichael and Boyer, 2016). Additionally, for this report, we consider blooms of the well-documented green algae *Cladophora* (Brooks et al., 2015) to be a HAB. Although not toxic, *Cladophora* can harm aquatic environments and recreation by forming large, dense mats that build up on beaches and in rivers and lakes, smothering life that lies under its mats.

Hypoxia is a condition where the concentration of dissolved oxygen (DO) in a portion of the water column decreases to a level that can no longer support living aquatic organisms, typically below 2-4 mg DO/liter (L). Low or zero oxygen conditions occur in waterbodies due to the confluence of physical, chemical, and biological processes. HABs also can exacerbate hypoxic events; and, concurrently, hypoxia can promote HABs by increasing phosphorus release from sediments (Correll, 1998).

A sign in Stuart, FL, warns of a HAB in June 2016. The National Centers for Coastal Ocean Science (NCCOS), through its HAB Event Response program, and in response to a request from the Martin County Board of County Commissioners, provided funds and identified experts to track the unprecedented bloom in Lake Okeechobee. This bloom began in May 2016 and expanded to the largest cyanobacterial bloom in the state in at least 10 years (Credit: NOAA/NCCOS).

HABs and hypoxia occur naturally, although human-influenced ecosystem changes such as excessive levels of nutrients such as nitrogen and phosphorus, extreme weather events, and invasive organisms can cause or exacerbate events. Research over the past 20 years indicates these types of events are increasing and becoming more severe in freshwater and marine systems (Zhang, 1994; Paerl et al., 1997; Paerl et al., 2008; Michalak et al., 2013; Cavole et al., 2016).

While researchers are uncertain of the full economic effects of HABs and hypoxia, regional studies show that losses in tourism, housing, and general business revenue can amount to hundreds of millions of dollars annually (Bingham et al., 2015).

Harmful Algal Bloom and Hypoxia Research and Control Act (HABHRCA)

By the 1990s, researchers identified serious and large-scale water-quality problems in U.S. waters, including HABs and hypoxia, most notably in the northern Gulf of Mexico, Lake Erie, Chesapeake Bay, and Long Island Sound. These problems prompted Congress to pass HABHRCA in 1998. In recognition of the ongoing nature of HABs and hypoxia, and how they continue to affect the entire United States, Congress has reauthorized HABHRCA twice, mostly recently in 2014.

The 2014 HABHRCA reauthorization is unique for several reasons. It calls for Federal agencies to consult with stakeholders to obtain their input on actions that directly address their needs and concerns related to mitigating and preventing HABs and hypoxia. It expands the focus of HABHRCA to include a specific emphasis on HABs and hypoxia in the Great Lakes and in fresh waters around the country. Additionally, it recognizes the need for further coordinated action across the Federal sector to address these issues. The legislation also calls for Federal agencies to provide integrated assessments identifying the causes, consequences, and approaches to reducing HABs and hypoxia nationally, with particular emphasis on the Great Lakes. It calls for operational forecasting, observations, and modeling tools required to support forecasting, all of which are of particular relevance for the region.

Purpose and Scope of this Report

HABHRCA 2014 includes a provision for the Task Force (the IWG-HABHRCA) to develop and submit "a comprehensive research plan and action strategy to address marine and freshwater harmful algal blooms and hypoxia." Via the White House Office of Science and Technology Policy, the IWG-HABHRCA submitted the RPAS on February 16, 2016. HABHRCA 2014 directs the IWG-HABHRCA in Section 603 (j) as follows:

Not later than 2 years after the date the Action Strategy is submitted under section 603B, the Under Secretary shall submit a report to Congress that describes—

(1) The proceedings of the annual Task Force meetings;

(2) The activities carried out under the Program, including the regional and subregional parts of the Action Strategy;

(3) The budget related to the activities under paragraph (2);

(4) The progress made on implementing the Action Strategy; and

(5) Any need to revise or terminate research and activities under the Program.

This report addresses the aforementioned requirements from the statute. Furthermore, it shows Federal progress in responding to the recommendations laid out in the RPAS. The recommendations address the causes of HABs and hypoxia, and impacts on stakeholders, as well

as on marine and freshwater ecosystems throughout the United States and its territories. This is the third report produced per the requirements of Sec. 603B of HABHRCA.

In addition, Section 605(b)(3)(I) requires "progress reports on the activities toward achieving the objectives of the *Harmful Algal Blooms and Hypoxia in the Great Lakes Research Plan and Action Strategy: An Interagency Report*, which was published on August 24, 2017. Some activities and projects described in this report to Congress are responsive to, and/or complemented by, actions described in the <u>biennial reports to Congress on activities directed by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (Hypoxia Task Force) (HABHRCA Section 604).</u>

Given the information provided previously, this report describes the progress under the RPAS in Federal fiscal years 2016-2017, and includes future efforts planned through 2020. The HABHRCA legislation requires additional progress reports to cover subsequent periods. Additionally, while the RPAS focused on a national scope, this progress report will focus on regions of the country that typically experience HABs and hypoxia more frequently, including the Great Lakes, the Gulf of Mexico, the coasts of Florida, and the U.S. East and West Coasts.

Proceedings of the Interagency Working Group on HABHRCA

The IWG-HABHRCA is co-chaired by representatives from NOAA (Department of Commerce) and the USEPA. Additionally, it is composed of the following member agencies and departments:

- Centers for Disease Control and prevention (CDC), Food and Drug Administration (FDA), and the National Institute of Environmental Health Services (NIEHS), of the Department of Health and Human Services;
- United States Army Corps of Engineers (USACE) and the Department of the Navy, of the Department of Defense;
- United States Geological Survey (USGS), the Bureau of Ocean Energy Management (BOEM), the National Park Service (NPS), and the Fish and Wildlife Service of the Department of the Interior;
- National Aeronautics and Space Administration (NASA);
- National Institute of Food and Agriculture (NIFA), Natural Resources Conservation Service (NRCS), and the Agricultural Research Service (ARS), of the United States Department of Agriculture (USDA);
- State Department; and
- National Science Foundation (NSF).

The IWG-HABHRCA has a number of subgroups that meet at least once monthly, each headed by different agencies:

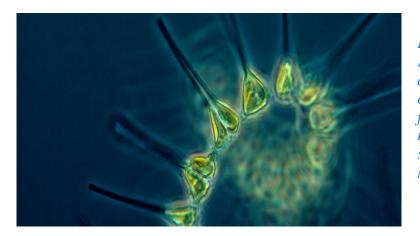
- HABs/Hypoxia, co-chaired by USDA and the USEPA;
- Great Lakes, chaired by NOAA;
- Implementation, co-chaired by the USEPA, NOAA, and USGS; and
- Certified Reference Materials and Standards, chaired by NOAA.

The IWG-HABHRCA meets regularly, holding biweekly meetings. These generally follow a similar format, in which the group reserves the first 30 minutes of each meeting for updates from leadership and the subgroups. It also allows time for group discussion on individual elements, including questions that arise regarding aspects of the reports that the group has produced, such as outlines or how to conduct data calls across all of the agencies; interesting questions or comments that members have received from stakeholders; and news items, including HAB and hypoxia events around the country, and how best to coordinate interagency response. Furthermore, the IWG discusses the highest priority work elements and progress underway within the member agencies. The IWG-HABHRCA reserves the final 30 minutes of each meeting for agency updates, including presentations from staff on a project or program at an agency that they wish to bring to the attention of the group. The presentations are good opportunities to increase awareness on current work, as well as for agencies to learn of projects on which they can collaborate. Indeed, the presentations have led to multiple collaborative efforts between agencies.

Additionally, the IWG-HABHRCA meets in person, on average, two times each year to hold strategy and planning sessions. The group held its most recent meeting of this type on April 18, 2017, and focused on planning; its next meeting is planned for April 2018. As a group, the IWG-HABHRCA developed a list of what they planned to accomplish over calendar year 2017, and began discussion of what agencies would like to see the IWG-HABHRCA accomplish over the coming years. Specifically, following were the objectives from that meeting, with updates covered throughout this report:

1. Planning

Develop a list of what the IWG-HABHRCA would like to accomplish over 2017, and begin discussion for the next few years, irrespective of budget considerations


- What is the IWG-HABHRCA collectively already doing? As a group, what optimally would we like to accomplish?
- What are the top-line messages for communicating with the public and reporting to Congress, as well as within and to member agencies?

2. Team-Building

This is a good opportunity for us to reconnect and have a more in-depth conversation about our role in protecting public, economic, and ecological health.

Over the course of the meeting, the IWG-HABHRCA determined goals for the group for calendar year 2017. These included developing the following:

- A calendar, to be hosted on NOAA's website, which shows individual agencies' upcoming extramural funding opportunities. This was in direct response to requests from stakeholders about a need to facilitate finding information on HAB- and hypoxia-related external grant programs within the Federal Government. We now have links to different agencies' funding opportunities.
- Improved communications materials, in order to including one-page documents that define HABs and hypoxia, and outline potential impacts, written for different audiences, as necessary. Additionally, we planned to develop a list of "success stories" and compelling statistics.

Phytoplankton, like this species of Asterionella, is the base of several aquatic food webs. In a balanced ecosystem, phytoplankton provide food for a wide range of creatures including birds, whales, shrimp, snails, and jellyfish (Credit: NOAA/NCCOS).

II. Progress Made on Implementing the Action Strategy

Since the reauthorization of HABHRCA 2014, the IWG-HABHRCA has convened and coordinated with relevant federal agencies to discuss HABs and hypoxia issues in the United States. The IWG-HABHRCA also has conducted several webinars, held in-person meetings, and participated in conferences in all major regions around the country to discuss topics related to HABs and hypoxia with Federal partners and stakeholders. The group used this input to develop the RPAS, and to coordinate research and the development of useful and effective products. This section provides the progress made by the member agencies of the IWG-HABHRCA to implement the RPAS and address the recommendations identified.

The RPAS lists the following core actions for the member agencies of the IWG-HABHRCA to undertake the following:

- 1. Advance the scientific understanding of HABs and hypoxia;
- 2. Strengthen and integrate new and existing monitoring programs;
- 3. Improve predictive capabilities;
- 4. Improve stakeholder engagement and understanding of socioeconomic impacts; and
- 5. Expand collaborations in research, management, and policy-related arenas.

Actions to Advance the Scientific Understanding of HABs and Hypoxia

a. <u>Develop certified reference materials (CRMs) and other standardized and validated</u> <u>detection and analysis methods for HAB toxins.</u>

Federal agencies are researching how changing environmental conditions influence HABs and hypoxia. Member agencies of the IWG-HABHRCA have been working to increase the availability of analytical methods and CRMs to predict the onset and intensity of HAB-related toxin levels. To address this recommendation, members of the IWG-HABHRCA formed a subgroup on CRMs to examine intra- and interagency methods and approaches for developing and sustaining CRM availability. The subgroup on CRMs has been evaluating the published literature of most of the available toxin assessment standards, particularly those that are not CRMs, to determine their quality and their usefulness when highly accurate results are needed, such as for measuring levels in drinking water to ensure public safety. They also are developing a process guide for consistent sampling methods and testing procedures. Additionally, agencies have been working on developing and validating standardized analysis methods, as well as generating purified standard reference material to ensure consistency and comparability of results between laboratories and other testing environments. Federal agencies also are developing methods capable of analyzing edible fish, plant, or animal tissues for multiple toxins and testing such methods on reservoir, stream, and coastal food webs. The USEPA is conducting studies to verify the purity and concentration of toxins standards from several vendors to confirm the quality of the standards for toxicity studies. The USGS is providing analytical support to assist with this evaluation.

b. <u>Conduct studies on toxins in food and on toxin mixtures.</u>

The USEPA is conducting toxicological evaluations of several toxins to determine the potential risk of triggering adverse health effects. In addition, the USEPA is evaluating the oral toxicity from multiple microcystin congeners, which cause acute toxicity and liver and other cancers with prolonged exposure. This approach ultimately will help utilities, resource managers, and the government to manage the risks from cyanotoxins in drinking and recreational waters. The USGS hasprovided analytical support to the USEPA in support of this evaluation. Research is still needed to better confirm foodborne illness related to algal toxins due to a lack of accurate clinical methods for detecting toxins in biological specimens.

c. <u>Develop more effective HAB suppression and control methods that have minimal</u> <u>environmental effects and lower cost.</u>

Protecting source water from contamination reduces risks to public health from exposures to contaminated water, and can reduce treatment costs in drinking water supplies. Once a HAB toxin is detected and confirmed, control measures to protect the source water should be tailored to address the threat of HABs. NOAA is assessing the potential of control techniques, including new technologies such as bacteria-produced algicides to determine potential impacts on ecologically important species. NOAA has advanced nutrient control of bloom toxicity in Chesapeake Bay and other mid-Atlantic estuaries, and of brown tide blooms in Long Island Sound, the contribution of physical transport of Bay of Fundy seed algal populations from the

magnitude of Gulf of Maine red tides, and the role of upwelled nutrients on formation and magnitude of the Florida red tide. Several NOAA-supported studies are evaluating the effects of nutrient-loading and other factors on hypoxia in order to inform managers of effective mitigation strategies. Advanced understanding of the quantitative relationship between nutrient and hypoxia properties support several statistical and 3D time-variable models that have provided managers with an assessment of the progress of nutrient reduction actions, and guidance on nutrientreduction-strategy revisions. Beneficiaries include the Mississippi River/Gulf of Mexico Hypoxia Task Force, Chesapeake Bay Program, Rhode Island Department of Environmental Management (Narragansett Bay hypoxia), and Green Bay Metropolitan Sewage District and Wisconsin Department of Natural Resources (Green Bay hypoxia).

Federal agencies also conduct research focused on developing cost-effective means for destroying cyanobacterial-HAB-causing organisms and their toxins. For example, USACE's Aquatic Plant Control Research Program is conducting research using pumps to form bubbles as a way to break up HABs. In addition, Federal agencies award grants to qualified small businesses to support high quality research related to HABs treatment techniques used to break up HABs in aquaculture production.

d. <u>Understand the influence of climate change, atmospheric deposition of nutrients, and other</u> <u>contributing factors on the occurrence, frequency, and severity of HABs and hypoxia.</u>

Federal agencies are researching how the development of HABs and hypoxia can be influenced by rising average water temperatures, low light, eutrophication, and other factors such as specific human-related and natural sources of nitrogen, phosphorus, organic matter, and metals. In 2013, EPA published the Impacts of Climate Change on the Occurrence of Harmful Algal Blooms, to summarize the potential impacts of climate change on harmful algal blooms in freshwater and marine ecosystems (USEPA, 2013). Current and planned research includes assessments on how changing weather patterns may affect the severity of HAB events over the coming decades, quantitative predictions of future changes in climate and anthropogenic nutrient inputs on the spatial and temporal extent of hypoxia, and the determination of bloom toxicity. The USEPA is developing, in collaboration with states, <u>Lake Numeric Nutrient Criteria</u> that will inform how phosphorus and nitrogen concentrations contribute to HABs and drinking and recreational water criteria and swim advisories.

e. <u>Develop case definitions for the spectrum of HAB-related illnesses, and produce clinical</u> therapeutic guidance for the spectrum of illnesses associated with exposure to HAB cells and toxins.

In 2016, the CDC launched <u>One Health Harmful Algal Bloom System (OHHABS</u>), a reporting tool that allows public-health officials to report information on HAB exposures and subsequent health effects over time. OHHABS will provide the information needed by the CDC to characterize the HAB toxin poisonings, including refining case definitions, describing disease progression, and will help the CDC, other scientists, and health-care providers to identify successful treatments.

Actions to Strengthen and Integrate New and Existing Monitoring Programs

a. Strengthen long-term HAB and hypoxia monitoring activities

Federal agencies have developed programs, methods, and techniques to monitor for HABs and hypoxic zones in U.S. fresh and marine waters. Agencies have expanded monitoring capabilities to develop better monitoring techniques and improve understanding of the relative contributions of causal factors in the development of HABs or hypoxia. For example, agencies support

research on Lake Erie to assess the impact of quagga mussels (*Dreissena bugensis*) on phosphorus-management strategies, and how internal phosphorus cycling affects HABs and hypoxia.

NOAA has in place a multi-partner sustainable monitoring program that encompasses the northern Gulf of Mexico hypoxic zone, and advances ecosystem management objectives for mitigating hypoxia, ocean acidification, and other ecosystem stressors. This project will help strengthen long-term monitoring activities in the Gulf of Mexico watershed and coastal zone. Furthermore, NOAA supports citizen-science monitoring efforts via the <u>Phytoplankton Monitoring Network (PMN)</u> and Freshwater Phytoplankton Monitoring Network (FPMN) to monitor and report on HAB species in the coastal, Great Lakes, and Alaska regions.

The USGS conducts long-term monitoring of nutrients and other water-quality characteristics in rivers and streams

Cyanobacteria (Dolichospermum) bloom, Harsha Lake, OH (Credit: USEPA/ORD).

through the National Water Quality Network, which measures multiple annual delivery of nitrogen, phosphorus, and carbon compounds to coastal waters and the Great Lakes from their major tributaries. The sources and quantities of nutrients delivered by streams to the Great Lakes, coastal areas such as the Northern Gulf of Mexico, and estuaries such as the Chesapeake Bay are monitored at 117 freshwater sites. Annual updates from the monitoring sites are available to the public, including nutrient concentrations, loads, and yields. These data, along with data aggregated from numerous other agencies, are used to evaluate trends in critical water quality parameters including nutrients and sediment. These data are used by management agencies to track progress in nutrient control practices and to determine progress in meeting water quality goals.

The USDA combines its missions for resource assessment and agricultural and natural resources research in support of the Conservation Effects Assessment Project (CEAP). Under CEAP Watershed Assessment Studies, USDA NRCS and ARS, and their university partners, collaborate to assess the effects of conservation practices on water quality, water availability, and soil resources in small agricultural and rural watersheds. CEAP assesses reductions in nutrients and sediment from implementing conservation practices. Assessments are carried out at field and watershed scales. CEAP watersheds are located around the nation, with many in the Mississippi River Basin, the Western Lake Erie Basin, and the Chesapeake Bay.

As part of the <u>National Aquatic Resource Surveys (NARS)</u>, the USEPA, states, and tribes have been monitoring for cyanobacteria and cyanotoxins in a series of surveys conducted in lakes, rivers/streams, coastal waters, and wetlands in the United States. The USEPA and its partners regularly monitor HAB toxins at more than 1000 sites throughout the United States each summer as part of the NARS. The USEPA also provides assistance at the regional scale to build capacity in local HAB monitoring programs including such things as analysis, monitoring, and analytical support.

In 2007, and again in 2012, the National Lakes Assessment (NLA) included indicators associated with the risk of potential exposure to cyanotoxins, including an analysis of microcystin levels and two related indicators, cyanobacteria and chlorophyll-a. In 2017, the NLA included these same indicators and added cylindrospermopsin. Additionally, the USEPA's National Wetland Condition Assessment 2011 and 2016, National Rivers and Streams Assessment 2013-2014, and the National Coastal Condition Assessment (NCCA) 2015, which includes the Great Lakes, added analysis of microcystin to the suite of existing indicators, including chlorophyll-a. The USEPA and USGS are collaborating on microcystin analyses for the National Wetland Condition Assessment 2016 and the National Coastal Condition Assessment 2015. Through а collaboration with the USGS, the NCCA was also able to

NOAA scientists deploy an ESP in Lake Erie in 2016 (Credit: NOAA/GLERL).

expand the list of algal toxins that are being analyzed as part of the 2015 assessment. The USEPA's Great Lakes National Program Office (GLNPO) has long term monitoring programs in place to measure and assess water quality, nutrient concentrations, chlorophyll-*a*, and the abundance and diversity of zooplankton, phytoplankton and benthic communities. Almost 100 fixed station sites are sampled each spring and summer to assess the ecological health of the lakes, evaluate trends and identify emerging problems. Each Summer GLNPO also conducts dissolved oxygen surveys to measure and calculate the oxygen depletion rate of hypoxic waters in the central basin of Lake Erie. The phytoplankton monitoring component is being enhanced to collect additional data at nearshore sites and a pilot effort to collect year round samples with the use of automated samplers.

In addition, the USEPA builds capacity by supporting monitoring programs in the regions and specifically to tribal communities, and working with citizen scientists, trained water professionals, drinking water suppliers, academic researchers, and the public via the <u>Cyanobacteria Monitoring Collaborative</u> to map and understand harmful cyanobacteria occurrences, and their spatial and temporal distribution in waterbodies. Finally, the USEPA released methods for detecting cyanotoxins in drinking water and included ten cyanotoxins or cyanotoxin groups on the list of contaminants to monitor in public drinking water systems across the nation as part of the fourth <u>Unregulated Contaminant Monitoring Rule</u> (UCMR 4).

The Environmental Systems Branch at the USACE Engineer Research and Development Center (ERDC-EL) has been working in partnership with the USACE Great Lakes and Ohio River Division, the University of Cincinnati, the USEPA, and state partners to assess the use of

airborne and satellite imagery for detection of water quality indicators (e.g., chlorophyll, phycocyanin, and turbidity) of HABs in small lakes and reservoirs. This includes in the Ohio River, and Harsha Lake in OH. Specifically, the work includes assessing the range of available satellite sensors and variety of remote sensing algorithms that could be used to assist with early detection and monitoring.

Monitoring efforts for nutrients are still needed to address the research gap on how sediments affect links between internal phosphorus cycling in the water column and the proliferation of HABs and hypoxia. The USEPA is conducting studies to provide a modeling framework and tested computational methods for linking watershed loadings of nutrients to the loss in beneficial uses from algal blooms causing degraded reservoir, lake, stream, and wetland water quality and risks to ecologic and human health. Combining environmental data such as nitrogen and phosphorous levels, hydrodynamic data, sunlight and temperature data, and *in-vivo* cyanobacterial densities could provide short-term predictive capabilities useful to recreational water users and drinking water treatment operators to reduce exposure and optimize treatment processes. In addition, more studies are needed to determine the effect of phosphorus, nitrogen, and sediment in Lake Erie in particular, to identify response strategies to more effectively address HABs and hypoxia events.

b. <u>Integrate new monitoring technologies into emerging U.S. and global ocean-observation</u> <u>systems.</u>

Federal agencies have developed new observing systems capable of transmitting real or near real-time information from remote locations in marine and freshwater systems to collect wide streams of environmental data that can be used to trigger early warnings and improve HAB or hypoxia characterization. For example, Environmental Sample Processors (ESPs) are positioned in Lake Erie, the Gulf of Maine, and the Pacific Northwest and California coast as real-time monitoring laboratories for HABs. Another HAB detector, the Imaging Flow Cytobot, is being commercialized and expanded along the Texas Gulf coast. Underwater autonomous vehicles (e.g., gliders) are being tested for mapping the Gulf of Mexico hypoxic dead zone, which will greatly enhance monitoring in complement with ship surveys and fixed observing systems. In cooperation with state and local agencies, USGS sensors are monitoring current conditions for chlorophyll, an algal pigment and biomass indicator, at over 50 stations in 17 states on inland rivers, lakes, and along the marine coasts and disseminating the information on the Internet to the public. In addition, Federal agencies are establishing rapid-response protocols for detecting HAB toxins. For example, the Food and Drug Administration (FDA) is working with the seafood industry to develop methods to detect HAB toxins in seafood, and NOAA is developing rapidresponse test kits and Solid Phase Adsorption Toxin Tracking to assess the presence of HAB species and toxins in local waterways.

NOAA, the USEPA, and other federal agencies are working with the Alliance for Coastal Technologies, University of Louisiana Lafayette and others to pilot the use of continuous nitrate sensors at a number of locations in and around the Gulf of Mexico. An important goal of the pilots is to better understand how new sensors and data can be effectively integrated for improved monitoring and communication about nutrient levels in the Gulf. These pilots are an extension of the Interagency Nutrient Sensor Challenge that has been helping to accelerate the

development of low cost continuous nutrient sensors. These will be deployed at a number of sites including the Florida panhandle; Mobile Bay; Mississippi Sound; Louisiana Hypoxic Zone; Lake Pontchartrain and Coastal Texas.

c. <u>Develop a rapid-response strategy for assessing HAB exposure.</u>

Researchers in a number of agencies are working to establish rapid sample collections and response protocols for detecting HAB toxins in humans and animals. The FDA is currently working with the seafood industry to develop new and rapid assessment methods to detect HAB toxins in seafood. NOAA also prioritizes the development of rapid-response test kits that communities, schools, or interested stakeholders can use to determine the presence of HAB species and toxins in local waterways. In addition, Water Research Institutes in several states have been established to help develop new tools to better understand and predict cyanobacterial HABs. The USEPA developed the Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems Fact Sheet (USEPA, 2014) to provide information to drinking water operators on health effects, sampling methods, and the effectiveness of treatment techniques to remove cyanotoxins. The USEPA also developed the Drinking Water Cyanotoxin Risk Communication Toolbox (USEPA, 2016c) to support public water systems in communicating information to their consumers before, during, and after a bloom event.

USEPA's Tools and Resources to Prepare for and Reduce Risks from Cyanotoxins in Drinking Water

Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems Fact Sheet Provide information to drinking water operators on health effects, sampling methods, and the effectiveness of treatment techniques to remove cyanotoxins.

Drinking Water Cyanotoxin Risk Communication Toolbox

For states, tribes, and public water systems to use in communicating with the public before, during, and after HAB events (USEPA 2016c).

Cyanotoxin Management Plan Template and Example Plans

To assist states, tribes and public water systems in developing their own system specific cyanotoxin management plan, includes potential steps for monitoring, treatment and communication activities (USEPA 2016b).

Water Treatment Optimization for Cyanotoxins

To support public water systems in developing monitoring and treatment optimization approaches for cyanotoxins to achieve the best performance possible from each treatment process (USEPA 2016d).

Cyanotoxins in Drinking Water Webpage

To include these documents and other resources on impacts from HABs and cyanotoxins to drinking water.

Actions to Improve Predictive Capabilities

a. <u>Develop, improve, and validate HAB and hypoxia models and remote sensing</u>

Early warnings may be used to protect human and animal health by providing information of HAB and hypoxia events. Researchers use data to allow fishermen, drinking water and other resource managers, veterinarians, and others to make preparations and inform the public of the potential for a deleterious bloom. One major effort is the <u>Cyanobacteria Assessment Network</u> (<u>CyAN</u>), a multi-agency effort led by the USEPA and performed jointly with NASA, NOAA, and the USGS. The purpose of this project is to develop an early-warning indicator system to detect algal blooms in U.S. freshwater and marine systems using satellite data.

In addition, NOAA provides a number of HAB and hypoxia forecasts that routinely are applied in many coastal areas, with operational HAB forecasts in the Gulf of Mexico for the Florida and Texas coasts, and operational forecasts for Lake Erie *Microcystis* blooms. These also include warnings Gulf of Maine red tide; *Pseudo-nitzschia* blooms off California and the Pacific Northwest; and hypoxic zones in Lake Erie, the Gulf of Mexico, Chesapeake Bay, Narragansett Bay, and Green Bay. NOAA has an <u>experimental HAB bulletin in western Lake Erie</u>, which provides bi-weekly forecasts for *Microcystis* blooms in the basin, as well as an experimental hypoxia warning system for Lake Erie in Cleveland, OH.

Regarding the development of models, the USEPA is developing and applying scenario-based ecosystem models to better understand and predict aquatic ecosystem response and recovery to changing nutrient loads and other stressors, such as HABs. Using an integrative modeling approach, researchers will be able to quantitatively evaluate hypoxia causes and impacts and develop outreach tools to communicate advanced understanding to coastal managers and other stakeholders. The USGS is developing predictive statistical models based on real time sensor data and samples of toxins in water. Among factors found meaningful by the USGS for daily predictions of the occurrence of algal toxins, chlorophyll and phycocyanin sensor readings had the highest correlation to microcystin in a recent study (Foster et al., 2017).

b. <u>Develop enhanced surveillance for human and animal exposure, illnesses, disease, and death</u> <u>resulting from HAB toxins.</u>

Federal agencies are developing methods to analyze multiple toxins in edible fish, plants, and animal tissues and testing these methods on reservoir, stream, and coastal food webs. The CDC launched <u>OHHABS</u> in June 2016 to collect data on individual human and animal cases of illnesses from HAB-associated exposures, as well as environmental data about HABs. Simultaneously, the CDC went live with a new <u>HAB-associated illnesses website</u> to provide information for the public on how to identify HABs and protect themselves from illness. This site also includes <u>health promotion materials</u>, such as reference cards for veterinarians, physicians, and the public about HABs. To inform stakeholders and the public of the launch of the website and OHHABS, the CDC engaged in a variety of communication activities, including outreach to over 80 internal and external partners, social media messaging, and a media advisory. In total, 41 news articles and one broadcast story (with an estimated reach of 4,042,276 people)

mentioned the CDC's HABs website or OHHABS. In the two months following the launch, the new HABs website received 15,497 page views.

The USEPA is also working to estimate human exposure to cyanotoxins over specific geographic areas. The health of those communities with a history of cyanobacteria blooms detected via satellite may be evaluated retrospectively by the analysis of existing health records as part of the CyAN project. The FDA is working to determine ciguatoxin levels in food fish from U.S. waters. The FDA, as well as the CDC, is developing methods to quantify and characterize absorbed doses of cyanotoxins in biological samples to support the interpretation of associated health effects. Still, larger and more complete datasets are needed to develop improved forecasting and decision-making products.

Actions to Improve Stakeholder Engagement and Socioeconomic Understanding

a. <u>Improve communication and coordination among health and environmental agencies so that</u> <u>reports of HAB-associated animal poisonings are used as an indicator of potential human-health</u> <u>risk. Develop science-based guidelines for cyanotoxins.</u>

The IWG-HABHRCA has prioritized improving coordination and communication among the health and environmental agencies, as well as with outside stakeholders, since the publication of RPAS. During the IWG-HABHRCA bi-weekly meetings, members present on ongoing and planned projects, and use the time to discuss possible ways for agencies to coordinate in the future. Moreover, through the IWG's subgroups, agencies have a chance to develop specific documents and research plans, such as the RPAS and the Great Lakes HAB and Hypoxia Plan, as well as communications tools for informing the public of the risks presented by HABs and hypoxia. This includes encouraging veterinarians for example, through discussions with the American Veterinary Medical Association, to report HAB-related poisonings in animals to local and state health departments. The IWG continues to develop communications tools, and to seek out opportunities to interact with the public.

In support of the 2015 Drinking Water Protection Act, the USEPA will continue assessing occurrence, toxicology and epidemiology data for additional cyanotoxins that could be present in sources of drinking water as stated in the Algal Toxin Risk Assessment and Management Strategic Plan (USEPA 2015a), submitted to Congress in November 2016. The USEPA increased understanding on the human-health risks from exposure to HABs, listing cyanotoxins in the Contaminant Candidate List (CCL) for further assessment of health effects data. The USEPA also included ten cyanotoxins or cyanotoxin groups in the fourth UCMR4 to be monitored in public water systems. By publishing the Drinking Water Health Advisories for the cyanotoxins microcystins (USEPA 2015c) and cylindrospermopsin (USEPA 2015b) to assist Federal, state, and local officials, and managers of public or community water systems, the USEPA helps to protect public health from cyanotoxins in drinking water. Along with the health advisories, the USEPA developed Health Effects Support Documents for the Cyanobacterial Toxins Anatoxin-a (USEPA 2015d), Cylindrospermopsin (USEPA 2015e), and Microcystins (US EPA 2015f), and materials regarding feasible analytical methods, monitoring, and treatment options. In 2016, the USEPA released a Drinking Water Cyanotoxin Risk Communication Toolbox. The USEPA also developed liquid chromatography/tandem mass spectrometry

(LC/MS) methods for the determination of <u>microcystins and nodularins</u> (USEPA 2015g), and <u>cylindrospermopsin and anatoxin-a</u> (USEPA 2015h) in drinking water. Later in 2016, the USEPA published an <u>ADDA ELISA Method</u> for microcystins and nodularins (USEPA 2016a). The USEPA will continue evaluating the human-health risk from drinking water contaminated by these and other toxins and will determine and issue, if needed, health advisories for those algal toxins. CDC developed a Drinking Water Advisory Communication Toolbox that includes information about communicating HABs-related issues to the public.

In December 2016, the USEPA published draft guidance for <u>Human Health Recreational</u> <u>Ambient Water Quality Criteria and/or Swimming Advisories for Microcystins and</u> <u>Cylindrospermopsin (USEPA, 2016e)</u>, for consideration by states and local health agencies to protect the public from contact, including incidental ingestion of cyanotoxins during primary contact recreation. In July 2017, the USEPA released several materials to assist recreational waterbody managers interested in <u>monitoring and responding to cyanobacteria and cyanotoxins</u> <u>in recreational waters</u>. These materials also include a <u>recreational water communication toolbox</u> for cyanobacterial blooms and a <u>recommendations document for monitoring for cyanobacteria</u> <u>and cyanotoxins in recreational waters</u>.

Since 2015, the USEPA has facilitated regional HABs workshops across the country to provide information on human health risks, prevention, control and management of blooms, and effective treatment techniques in drinking water. The agency is using the workshops as opportunities to improve networking and communication among states, tribes, and Federal partners. Other Federal agency-sponsored workshops and groups have been conducted to expand research, share information, and create networking opportunities to continue research efforts on the human and ecological-health risks. In several regions of the country, the USEPA supports tribal communities directly to monitor, predict and manage HABs that appear in their source and drinking waters.

b. *Identify susceptible populations at higher risk for HAB-associated adverse health effects.*

The CDC expects to use the Community Assessment for Public Health Emergency Response (CASPER) to identify needs quickly in HAB-affected communities. The USEPA worked with the University of Cincinnati and Miami University to evaluate the effect of cyanobacteria in susceptible individuals, especially those with chronic rhinitis. The goal was to identify cyanobacteria allergen(s) responsible for causing sensitization in these individuals, and to understand the relationship between cyanobacteria allergenicity and toxicity (Geh et al., 2015). The USEPA is evaluating biological samples for cyanotoxin concentrations to characterize associated health effects among humans and animals and possibly identify populations that could be at higher risk based on exposed doses or demographic characteristics. The USEPA is also conducting laboratory mouse bioassay studies regarding exposure to common algae and cyanobacterial toxins with the intention of generating information on adverse health effects one might expect to see in people and animals. OHHABS data collected by the CDC over time will contain information to further identify vulnerable populations based on factors such as exposure-related activities, health history, and geographic location.

c. <u>Expand stakeholder engagement.</u>

A primary need that the IWG-HABHRCA heard from stakeholders is for a unified, common web presence that provides basic information on HABs and hypoxia, as well as information on Federal activities. The <u>IWG-HABHRCA created a site</u>, hosted on NOAA's website, that is intended to serve as a "one-stop shop" for stakeholders. It links to websites maintained by member agencies; includes downloads of the products that the working group has created; and also provides basic background details on the history of HABHRCA, the IWG-HABHRCA, and HABs and hypoxia. Furthermore, a new feature of this site is a funding calendar that includes details on Federal funding opportunities (FFOs) and requests for proposals (RFPs) that routinely are put out by the member agencies, and relate to HABs and hypoxia.

To expand stakeholder engagement and to improve coordination and communication, the USEPA is conducting Regional HABs workshops across the country. These workshops provide information related to human health risks, prevention, control and management of blooms and effective treatment techniques in drinking water, as well as opportunities to build relationships among federal, state, and tribal Clean Water Act and Safe Drinking Water Act programs by making connections and identifying shared HAB-related goals, needs, and barriers. For example, on April 2017, the USEPA Region 9, in collaboration with California's State Water Board Surface Water Ambient Monitoring Program, hosted a HABs webinar and a three-day workshop for state, tribal, and local health and environmental programs, as well as water utilities, to share HABs information and allow networking. In addition, the USEPA leads the Inland HABs Discussion Group, along with the CDC and USGS, a multi-agency group of public-health officials from states, counties and tribes, academia, and Federal agencies that holds webinars to discuss issues related to research, monitoring, human and ecological health risk assessment, education, and outreach.

Another activity tailored to expand stakeholder engagement is the National HAB Committee, on which several Federal agencies serve as *ex-officio* members to provide a collective voice for the academic, management, Federal, and other stakeholder communities to facilitate coordination and communication of HAB activities at a national level. Activities tailored to educate and engage the community also include the monitoring programs working with citizen scientists.

To improve communications with health and environmental agencies, the USEPA has a <u>Cyanobacterial HABs website</u> to provide information for water professionals, drinking water suppliers, academic researchers, and the public on cyanobacteria and their toxins in freshwater systems. The USEPA also produces a current news monthly <u>Freshwater HABs Newsletter</u> that focuses primarily on freshwater HABs, and provides information on upcoming events, conferences, and webinars, useful resources, beach closures and health advisories and recently published journal articles. The USEPA also collaborates with the USGS, the USACE, FEMA, Coast Guard, and Maritime Administration in workgroups, such as the Upper Mississippi River Basin Association (UMRBA) HABs workgroup to share monitoring and laboratory capacities. UMBRA produced a <u>response manual for HABs</u> in 2016. UMBRA increases efforts to minimize the impacts of HABs and hypoxia such as developing nutrient criteria for water quality programs in OK, the use of reactive or filter mats to act as a sorbent for soluble and total phosphorous from runoff.

d. Evaluate socioeconomic impacts of HABs and hypoxia, and the costs of mitigation.

There are many knowledge gaps related to the socioeconomic impacts of HABs and hypoxia, particularly for events that occur in inland lakes, including assessments of the effects of individual HAB or hypoxia events; models of the socioeconomic costs of HAB and hypoxia impacts on food, drinking water, recreation, natural resources, home values and more; and the cost-effectiveness of prevention, control, and mitigation strategies, including nutrient reductions, to support decision-makers and inform prioritization. NOAA is coordinating with Federal agencies and economic experts to organize a workshop to discuss research methods and needs related to economics and HABs. The focus of NOAA's HABHRCA-authorized FY16 Northern Gulf of Mexico (NGOMEX) competitive program was on hypoxia impacts of the Gulf of Mexico dead zone. The funded studies apply several population- and ecosystem-based models to assessing and predicting the effects of the hypoxic zone on fisheries under various nutrient management and Mississippi River diversion scenarios. State and Federal fisheries managers are involved as project investigators or members of advisory committees. A component of the multiagency CyAN project will estimate economic value of detecting water quality using remote sensing data. Additionally, the CDC CASPER project identifies relevant needs quickly in HABaffected communities.

Actions to Expand Collaborations in Research, Management, and Policy-Related Arenas

a. <u>Continue and expand relevant research, management, and policy collaborations.</u>

USDA's National Institute of Food and Agriculture (NIFA) provides grants to fund high priority research, education, and extension projects that are intended to develop conservation methods, processes to support organic farming, cover-crop breeding, and technologies that meet the requirements of the National Organic Program (NOP) while protecting soil, water, and other resources. Furthermore, the USDA NRCS works to reduce nutrient and sediment field losses through continued implementation of conservation practices. Cumulatively as of 2016, for the Mississippi River Basin Initiative (MRBI), NRCS reached 93% of a nitrogen reduction goal, 83% of a phosphorous reduction goal, and 67% of a sediment reduction goal. Nearly 75% of the nutrient management implementation goal of 500,000 acres in the MRBI was also accomplished, cumulatively from 2010-2016.

To continue research efforts related to the occurrence and human-health related risks from exposure to cyanotoxins in drinking water, the USEPA listed cyanotoxins in the CCL, a list of drinking water contaminants that are known or anticipated to occur in public water systems, and that currently are not subject to USEPA drinking water regulations. The USEPA also included ten cyanotoxins or cyanotoxin groups in the UCMR 4 to be monitored in public water systems. The USEPA uses the UCMR rule to collect occurrence information on unregulated contaminants that are suspected to be present in drinking water. Together, the CCL and the UCMR monitoring provide a basis for future regulatory determinations and, as warranted, actions to protect public health. In 2015 and 2016, the USEPA released Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water (USEPA 2015i) and Cyanotoxin Management Plan Template and Example Plans (USEPA 2016b) to assist state, tribes and public water systems as

they develop their own management strategies. The USEPA worked in collaboration with four states and five drinking water utilities to develop the example plans.

b. <u>Develop guidelines and tests for HAB toxins in drinking and recreational water, and improve</u> <u>toxin removal during drinking water treatment.</u>

The USEPA is working on several research projects to <u>assess the effectiveness of methods to</u> <u>remove toxins during water treatment</u>. These include a study on optimizing the application of chemicals and procedures during the early stages of drinking water treatment and removing cyanotoxins from source waters and developing the resource Water Treatment Optimization for Cyanotoxins. The USEPA is also working with Ohio Environmental Protection Agency (OH EPA) to develop a Comprehensive Performance Evaluation (CPE) Protocol for HAB Control in surface-water treatment plants. In 2016, the USEPA also released Cyanotoxin Management Plan Template and Example Plans to assist state, tribes and public water systems as they develop their own management strategies following recommendations provided in the 2015 Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water. The USEPA worked in collaboration with four states and five drinking water utilities to develop the example plans.

III. Additional Activities Carried Out Under the Program, Including the Regional and Subregional Parts of the Action Strategy

This section is responsive to Section 603(j)(2) of the HABHRCA 2014 to "report the activities carried out under the nation's HABs program, including the regional and sub-regional parts of the Action Strategy". It also provides the information required by Section 605(b)(3)(I) for "progress reports on the activities toward achieving the objectives of the Harmful Algal Blooms and Hypoxia in the Great Lakes Research Plan and Action Strategy: An Interagency Report, which was published on August 24, 2017. The following illustrates information on specific regional and subregional activities undertaken by the IWG-HABHRCA's member agencies since 2014. For further information on specific, related current and planned activities, please see Appendix 1.

Northeastern United States

- In 2017, NOAA was in its first year of producing a <u>weekly forecast bulletin</u> for HABs in the Gulf of Maine that predicts the size, location, and transport of bloom. In the Gulf of Maine, blooms of the toxic algae that cause "red tides" occur annually. Red tides can pose a public health threat, an economic threat to state shellfish industries, and negatively impact the tourism industry in the Gulf of Maine.
- USEPA researchers have been studying the temporal and spatial variability of water quality and cyanobacteria in two Rhode Island ponds with different ecological conditions. During the 2017 growing season, the USEPA conducted twice-weekly samplings at seven sites across each pond during bloom season and will continue oncemonthly sampling through winter. The goal of this research is to understand how the relative concentrations of chlorophyll *a*, phycocyanin, and microcystin vary spatially within the ponds and over time.

Pacific Northwest

- NOAA-supported researchers and staff developed a predictive model for *Pseudo-nitzchia* blooms and domoic acid in the Pacific Northwest. NOAA will run the forecast in demonstration mode, distributing bulletins to managers in 2017.
- In early fall 2017, NOAA researchers, Washington State fisheries managers, and academics worked to provide ongoing monitoring and testing using ESPs and other *in situ* sensors to determine whether it was safe to open the razor clam fishery. This was significant, given that the fishery not only provides a major source of tourism revenue and food for communities, but also because it is coming on the heels of a closure two years ago that had some considerable economic and social impacts. In the few weeks preceding the shellfish harvest, NOAA and our partners were able to predict and detect the HAB that potentially could have shut down the fishery. NOAA and its partners were able to provide an early warning, so that managers could begin testing early on. In fact, the forecast was one of the factors in the decision by the Washington Department of Fish and Wildlife to increase the bag limit on the number of clams each person could collect. This helped the communities that depend on recreational harvesting for tourism dollars. In fact, recreational razor clam harvesters set a record for one-day digger trips (17,800 diggers) on April 30, and generated \$7M and 77,800 digger trips over the 11-day opening in Long Beach, Washington.

Southeastern United States

• The USGS published new scientific findings on the occurrence of algal toxins in small streams in the southeastern United States (Loftin et al., 2016). This finding broadens the scientific knowledge base on the prevalence of algal toxins in U.S. freshwaters. The USGS demonstrated that algal toxins can be reliably predicted using phycocyanin sensors deployed in streams and lakes that serve as source waters for public supply and for recreation (Francy et al., 2016; Foster and Graham, 2016; Graham et al., 2017). These findings will lead to better prediction of HABs and serve as an early warning system to protect public health and the environment.

Gulf of Mexico

- NOAA is leading development of the Cooperative Gulf of Mexico Hypoxia Monitoring Program, a multi-partner sustainable monitoring program that encompasses the northern Gulf of Mexico hypoxic zone, and advances ecosystem management objectives for mitigation of hypoxia, ocean acidification, and other ecosystem stressors.
- Research workshops, like the Annual NOAA/Northern Gulf Institute's Gulf of Mexico Hypoxia Research Coordination Workshops, and groups such as the National Water Quality Program Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (also known as the Hypoxia Task Force) are working to expand research, share information, and create networking opportunities. The USGS Toxic Substances Hydrology Program

continues research studies on HABs and associated toxin mixtures, and encourages research on occurrence and human health risks from exposure to HABs.

Midwest, Not Including Great Lakes

• In 2016, the USGS started delivering <u>real-time data</u> to the public from more than 60 chlorophyll sensors in streams, lakes, estuaries, and coastal areas. Data from these sensors help to predict the onset and development of algal blooms that can cause taste and odor problems and possible toxin production in source waters for public supply and in recreational waters. Sensor-data has been used since 2013 to predict probability of geosmin and microcystin occurrence in Cheney Reservoir, an important drinking-water supply for the city of Wichita, Kansas. Wichita uses these tools to help inform drinking-water management strategies. The USGS, in collaboration with the USEPA, states, and tribes, published the largest survey of cyanotoxins in the nation's lakes. Scientists sampled 1,161 lakes across the nation for several cyanotoxins including cylindrospermopsin, microcystins, and saxitoxin. This study found multiple classes of cyanotoxins were present in lakes and reservoirs in diverse settings across the United States.

<u>Great Lakes</u>

- NOAA has made vast improvements in detecting, monitoring, and forecasting HABs. NOAA's HAB Forecast bulletin for Lake Erie transitioned to operations in 2016. NOAA is developing forecasts to warn Lake Erie drinking-water managers when hypoxic water approaches intake pipes.
- Under the <u>Great Lakes Restoration Initiative</u> (GLRI), Federal agencies have allocated significant expenditures since 2010 for a wide array of projects aimed at reducing nutrient loading into the Great Lakes. As an example, in response to the 2014 drinking water ban in Toledo, Ohio, Federal and state agencies quickly received nearly \$12 million in GLRI funds for projects intended to reduce and monitor HABs in western Lake Erie. More than \$67 million of GLRI funds were invested in the Lake Erie basin from 2010 through 2016 to reduce nutrient pollution and to support related science and monitoring work. Many new and innovative projects are being funded that will have direct impact on achievement of nutrient reduction goals to minimize the impacts of HABs and hypoxia in the Great Lakes. A significant portion of the GLRI investments are targeted to restoration and supporting science in high-priority watersheds and receiving waters that have high potential or known risk for experiencing HABs and/or hypoxia events, including the Fox River-Green Bay, Saginaw River-Saginaw Bay, and Maumee River-western Lake Erie.
- The USEPA will continue working with other Federal agencies and Canada on the actions to reduce phosphorus loadings that will minimize HABs and hypoxia in the Great lakes basin under the <u>Great Lakes Water Quality Agreement</u>. In 2014, Federal agencies worked with Canada and the states in Lake Erie basin to identify through scientific assessment and modeling, reductions necessary to curb HABs and hypoxia in Lake Erie. Multiple models were employed to generate load response curves of eutrophication indicators and reductions on the order of 40% were set to spring runoff from the Maumee

River. In 2016, Canada and the United States adopted these phosphorus reductions targets in the Lake Erie to minimize the extent of hypoxic zones which maintain algal species consistent with health ecosystems and to avoid biomass of cyanobacteria at levels that could pose a threat to humans or the ecosystem. Furthermore, in 2017, the USEPA released a draft Domestic Action Plan at the national level – as well as Ohio, Michigan, Indiana, and Pennsylvania, at the state level – for reducing phosphorus to Lake Erie.

- In 2010, the United States and Canada signed an agreement, the <u>Great Lakes Water</u> <u>Quality Agreement</u> (GLWQA), to reduce excess phosphorus levels that contribute to HABs in Lake Erie. The agreement includes ten annexes and the U.S. activities are coordinated by the USEPA. <u>Annex 4</u> on nutrients, includes the recommendations and actions to manage phosphorus and other nutrients such as minimizing the extent of hypoxic zones and maintaining cyanobacteria biomass at levels that do pose a threat to human or ecosystem health in the Waters of the Great Lakes. In 2016, through the Nutrients Annex, the United States and Canada committed to reduce 40% of total phosphorus loadings entering the Western Basin and Central Basin of Lake Erie. Annex 4 also provides recommendations to conduct and share research, monitoring and modeling needed to establish, report on and evaluate the management of phosphorus and other nutrients associated with HABs.
- In 2016, the USDA began implementing \$41 million to the <u>Western Lake Erie Basin</u> <u>Initiative conservation effort</u> to reduce nutrient losses from agricultural lands in the Great Lakes basin and released an <u>assessment of the effects of conservation on cultivated</u> <u>croplands in the Western Lake Erie Basin</u>, which has been used to inform conservation initiatives and domestic action plans. In addition, the USDA released a new Demonstration Farm Network in Ohio to implement, document and highlight successful conservation practices. It also began a new project on stacked conservation practices for successive water quality treatment.
- In 2017, the USDA released a new assessment and report on the instream effects of conservation practices on cultivated croplands, the second in a series. This analysis considers the impact of conservation adoption on instream and delivery dynamics of nutrient and sediment and draws attention to the need to consider legacy loads and associated time-lags when setting conservation goals and determining metrics of success. Once fully functional, conservation practices adopted in 2012 will reduce edge of field phosphorus losses by 17 percent, reduce phosphorus deposition in the Western Lake Erie hydrological system by 30 percent, and reduce phosphorus delivery to Lake Erie by 3 percent, relative to 2003-2006 values. Continued adoption of comprehensive conservation plans will help to increase the benefits of conservation practice adoption. Innovative conservation practices, such as phosphorus removal structures among others, are being implemented and evaluated to reduce dissolved phosphorus sources.
- The National Agricultural Library at the USDA has created an online, automatically updated bibliography to help track the science related to agricultural operations and Great Lakes harmful algal blooms and hypoxia, "Great Lakes Harmful Algal Blooms and Hypoxia: Agricultural Aspects". While it is not a complete listing of all the literature on

the topic and does include some citations that may not have a strict agriculture focus, the bibliography's value is in providing a look at current research findings that strengthen the science base needed for effective agricultural policy and management actions to address HABs and hypoxia.

Lake Erie Harmful Algal Bloom Early Season Projection

9 May, 2017 Projection 01

The severity of the western Lake Erie cyanobacterial harmful algal bloom (HAB) is dependent on input of bioavailable phosphorus, particularly from the Maumee River during the loading season (March 1-July 31). This product provides an estimate based on a combination of measurements to date and model predictions into July. The final seasonal forecast will be made in early July with more data and a comprehensive set of models.

WATER QUALITY RESEARCH UNIVERSITY

In March and April, the Maumee River had discharge and phosphorus loads below average. High NATIONAL rains the beginning of May produced a substantial load so far in May. There is some uncertainty in CENTER FOR would result in a midder bloom each the forecast favors precipitation remaining close to normal, which would result in a milder bloom, only slightly more severe than last year. However, the possibility of several rainfall events increase the range of uncertainty to more severe blooms. The projection will be updated approximately weekly with new data and weather models through the end of June.

Total bioavailable phosphorus (TBP) is the sum of dissolved phosphorus (which is ~100% available for HAB development), and the portion of particulate phosphorus that is available for HAB development. The TBP loads are projected to June 20th using river forecasts from the National Weather Service Ohio River Forecast Center, and to the end of the loading season using past data.

Stumpf (NOAA National Ocean Service), Johnson (Heidelberg University), and Dupuy (CSS at NOAA)

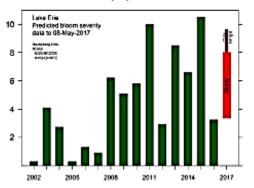
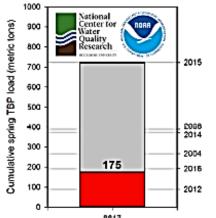



Figure 1. Projected bloom compared to previous years. The wide bar is the likely range of severity based on data from the last 15 years. The narrow bar is the potential range of severity. There is some uncertainty in rainfall over the next several weeks, causing the large uncertainty in the potential bloom severity.

Total bioavailable phosphorus (TBP) load Figure 3. accumulated from the Maumee River near Waterville to date. The right axis denotes the TBP load from selected previous years. Current loads have surpassed 2012, and equaled 2016 on May 08.

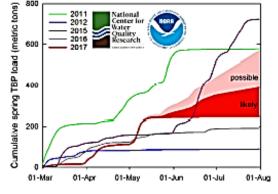


Figure 2. Cumulative total bioavailable phosphorus (TBP) loads for the Maumee River (based on Waterville). Each line denotes a different year. 2017 is in red, the solid line is the measured load to May 8th, the likely range for the remainder of the loading season in red area and possible range in light red area. The load will pass 2016 this week, but is likely to be lower than either 2011 or 2015.

Figure 4. True color image from May 8 2017 taken by the MODIS on NASA's Terra satellite. A plume of sediment from the Maumee River extends down the Ohio coast to Sandusky Bay. Small plumes are also evident around the smaller rivers. Shallow areas also show sediment stirred up from strong winds.

For more information visit: http://www.heidelberg.edu/academiclife/distinctive/nowgr_or http://coastalscience.noaa.gov/research/habs/forecasting/

An example of the operational Lake Erie HAB Bulletin, May 9, 2017. (Credit: NOAA)

IV. Need to Revise or Terminate Research and Activities under the Program

The HARBRCA legislation calls for the revision or termination of research and activities when they are complete or no longer needed. The IWG-HABHRCA and its member agencies do not see any need to terminate or revise activities and research under the program unless funding is not available or is limited.

V. Budget Related to HAB and Hypoxia Activities under the National Program

According to <u>GAO-17-119</u>, twelve agencies spent approximately \$101 million between FY2013 and FY2015 on activities related to HAB research, monitoring, or other areas. Per the report, five agencies in particular had the largest expenditures on HAB-related activities: NOAA (\$39.4 million),¹ NSF (\$15.4 million), EPA (\$14.5 million), USGS (\$9 million), and NIEHS (\$8 million). Other agencies, including those who participate in the IWG-HABHRCA, also reported millions of dollars in related expenditures. Furthermore, agencies reported expanding HABs-related projects since the end of that period. As discussed in this report, agencies clearly are investing more annually in HAB and hypoxia research, monitoring, forecasting, and mitigation measures. For more information on agency-specific expenditures, please refer to GAO-17-119 (GAO, 2016).

Conclusion

The programs, policies, and other activities highlighted in this progress report will help Congress and researchers to understand the causes and effects of HABs and hypoxia, to better monitor and detect HABs, and to improve surveillance of toxins and humans and animal diseases. The agencies involved have also been working since the publication of the RPAS report to increase and improve collaborations with stakeholders, as well as to develop risk communication materials and guidance to better understand and communicate health-related impacts of HABs and hypoxia.

As agencies proceed with the activities listed in Appendix 1, they have a clear vision for responding to the recommendations put forth in RPAS, complying with the 2014 reauthorization of the HABHRCA. These activities will focus among other areas on developing and validating methods for forecasting, predicting, and detecting HAB toxins; conducting studies on toxins in food and drinking water; and developing monitoring techniques and models. The agencies will work to understand the influences of temperature and nutrient input on the occurrence and severity of HABs and hypoxia, and improve toxin removal during drinking water treatment. Nevertheless, many challenges remain. These challenges include needs for the following:

• Established strategies for effective prevention, suppression, and control of HABs within watersheds and affected waterbodies.

¹ These numbers differ from those reported to Congress in NOAA's HABHRCA Spending tables, which include hypoxia work.

Although several methods for the control and treatment of HABs have been tested and evaluated by the Federal agencies, researchers need to develop effective HAB suppression and control methods that have minimal environmental effects and lower costs. In addition, questions remain regarding the effectiveness of measures and strategies to control nutrients and the implementation of these measures to improve water quality and reduce HAB formation.

• A rapid-response strategy for assessing HAB exposure.

With the development of increasingly accurate clinical methods, research will be needed to confirm exposure and foodborne illnesses related to algal toxins. In addition, researchers will need to investigate relationships between multiple classes and metabolites of toxins, and humans and animals, through inhalation, dermal, and ingestion exposures. Although OHHABS data collected by the CDC over time will help Federal agencies identify susceptible populations at higher risk for HAB-associated adverse effects, researchers and physicians need case definitions for the spectrum of HAB-related illnesses, along with clinical therapeutic guidance for the spectrum of illnesses associated with exposure to HAB cells and toxins.

• Understanding of the influence of climate change, atmospheric deposition of nutrients, and other contributing factors on the occurrence, frequency, and severity of HABs and hypoxia.

Although work is underway to address some of the factors that contribute to HABs and hypoxia occurrence and severity, monitoring efforts for nutrients are still needed to address the research gap on how sediments affect internal phosphorus cycling in the water column and the proliferation of HABs and hypoxia. The analysis of the environmental data, such as nutrient levels, temperature and cyanobacterial densities could provide useful information to recreational water managers and drinking water treatment operators that will help identify response strategies to more effectively address HABs and hypoxia events.

• Evaluation of the economic and socioeconomic impacts of HABs and hypoxia, and the costs of mitigation.

There are many knowledge gaps related to the economic and socioeconomic impacts of HABs and hypoxia, particularly for events that occur in inland lakes. More assessment of the socioeconomic impacts of individual HAB or hypoxia events are needed to determine which types of events require the greatest attention and resources. Also needed are models of the socioeconomic costs of HAB and hypoxia impacts (on food, drinking water, recreation, natural resources, as well as aesthetic impacts and lost ecosystem services). Finally, information is needed to characterize the cost-effectiveness of prevention, control, and mitigation strategies, including nutrient reductions, to support decision-makers and inform prioritization.

• National datasets on human exposure and cyanobacterial blooms monitoring. Although the Federal agencies in the IWG-HABHRCA are working to estimate human exposure to cyanotoxins over specific geographic areas, and estimate toxins levels in water and food, more complete datasets are needed to develop improved forecasting and decision-making products.

Continued and improved conservation, implementation, and agricultural management practices to reduce nutrients and sediment losses from agricultural lands.

Managing nutrient losses from the urban and agricultural landscapes is at the crux of addressing HABs and hypoxia across the United States. While agencies are working hard with communities to encourage and improve conservation, and to develop and implement nutrient reduction strategies, it is clear that there are many locations that need further assistance from the government. Furthermore, there is a need for refined research into methods that are more effective at limiting nutrient loss, while remaining cost-effective for the landowners and stakeholders implementing them.

The IWG-HABHRCA will continue coordinating and information sharing among the Federal agencies to fully implement the RPAS's goals and objectives and conduct relevant research, guidance, and polices. In addition, the IWG will continue engaging stakeholders through different forums to keep them aware of research and emerging issues.

Appendix 1. IWG Anticipated Agency Actions on HABs and Hypoxia from 2016 to 2020

This appendix lists the activities anticipated to be carried out by the Federal agencies members of the IWG in response to Section 603(j)(2) of the HABHRCA 2014 to address the recommendations under the five core actions listed in Chapter 7 of the RPAS. Key activities were identified during the development of this document and are not intended to be an exhaustive list.

1. Actions to Advance the Scientific Understanding of HABs and Hypoxia

Develop certified reference materials (CRMs) and other standardized and validated detection and analysis methods for HAB toxins.							
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expecte d Date of Comple tion	
Validate rapid screening and confirmatory methods for neurotoxic shellfish poisoning toxins in molluscan shellfish.	Multi laboratory validation of LC-MS method for NSP toxins in Eastern oyster and hard clams.	Multi-lab validation complete.	Evaluation by ISSC laboratory methods committee.	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2018	
Assess validated LC/MS method for monitoring neurotoxic shellfish poisoning toxins in molluscan shellfish	Verification of method efficacy.	Samples for assessment have been collected.	Additional collections and analysis of collected samples.	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2018	
Validate confirmatory LC- MS/MS for Caribbean Ciguatoxin-1 (C-	Validate a confirmatory detection method for the presence of C-CTX-1.	Method under optimization.	Complete validation.	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2018	

CTX-1) in fish						
Develop and validate methods for management of lipophilic shellfish toxins	Develop methods for shellfish toxins responsible for diarrheic shellfish poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP).	Validation of LC- MS/MS method for DSP complete for clam, Commercial PPIA kit validation in progress (with kit developer), New AZP toxin (AZA59) discovered on west coast (Co-PI on NOAA led MERHAB).	Extend LC- MS/MS method for DSP for oyster and mussel, Complete PPIA validation for ISSC, and determine human health risks for AZA59 in Puget Sound region (Co-PI on NOAA led MERHAB).	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2018
Assess ploidy on neurotoxic shellfish poisoning toxins in eastern oysters	Assessing ploidy's impact on toxin accumulation and depuration.	Lab exposures to <i>K</i> . <i>brevis</i> completed.	Analyses of accumulation and depuration rates for PbTX.	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2019
Development of analytical methods for improved measurement and monitoring of toxins related to harmful algal blooms in freshwater systems	Develop and refine liquid chromatography /mass spectrometry (LC/MS) based methods for toxin analysis.	Year 3 of 4-year project.	Laboratory work underway.	USEPA	Heath Mash mash.heath@epa. gov	2019
Develop Strategies and Methods for employing next Generation qPCR Array and	The purpose of this project is to provide the USEPA regions with improved tools to detect the genetic signatures of toxin producing cyanobacteria.	QAPP completed, supplies and equipment purchased, analytical services secured. First field	QAPP approval, qPCR method development, Sampling began April 18, 2017.	USEPA	Michael Davis, EPA Region 7, <u>davis.michael@e</u> <u>pa.gov</u>	2019

PhyloChip Microarrays	Sampling and field validation started Spring 2017.	season almost complete. Team also received ORD Innovation Grant dollars to work with the state of Kansas on Milford Lake.				
Develop methods for assessing tissue levels of algal toxins in aquatic food webs.	Develop a method capable of analyzing edible fish, plant or animal tissues for multiple toxins	Year 3 of 4-year project.	Sampling and laboratory work underway – 'total' microcystin extraction method (MMPB) has been developed and tested using 3 microcystin congeners. MMPB method successfully used to detect microcystins in spiked fish tissue samples and in fish exposed to microcystins in an experiment stream facility phosphate study.	USEPA	James Lazorchak azorchak.jim@ep a.gov	2019
Tools for the	Preliminary studies will	Year 3 of 4-year	Sampling and	USEPA	Tammy Jones-	2019
characterization of	focus on identifying key	project.	laboratory work		Lepp	
Prymnesium parvum	Prymnesium toxins produced		underway.		jones-	

and related toxins	in inland ponds/lakes, many of which are on Tribal lands.				lepp.tammy@epa .gov	
Toxic algae in-vivo fluorescence sensor	Develop in-vivo fluorescence sensors to measure trends in <i>Prymnesium parvum</i> population.	Year 3 of 4-year project.	Sampling and laboratory work underway. <i>Prymnesium</i> <i>parvum</i> culturing is active and initial 3-D fluorescence scanning is underway.	USEPA	Michael Elovitz elovitz.michael@ epa.gov	2019
Toxic Gene-Specific Monitoring for Harmful Algal Blooms Using Meta- Transcriptomic and RT-qPCR Approaches	 Use a combination of microscopy and genus- or species-specific PCR to identify cyanobacterial species compositions and succession in a bloom. Explore, through meta- transcriptonomic analysis, in situ toxic gene expression to reveal unknown or unmeasured toxins, and find novel gene targets for developing toxic gene assays. 	Year 2 of 4-year project 1.Evaluated the roles of qPCR and RT- qPCR in early-warning of CyanoHAB with association of cyanotoxin concentrations. One manuscript has been prepared. 2. Examined toxic cyanobacterial species, phytoplankton community successions, and the relationships between ELISA measurements and the biomasses of	1.Sampling and laboratory work underway at Harsha Lake, Ohio; Region 7 lake water samples; and National stream water samples 2. Developed a full set of qPCR assay to detected toxic cyanobacterial genus or species. 3.Explore novel genes associated with toxin producing, bloom-	USEPA	Jingrang Lu lu.jingrang@epa. gov	2019

		phytoplankton, cyanobacteria and <i>Microcystis</i> , and between the nutrients and the biomasses during blooms in an Ohio lake. A paper has been accepted. 3. An analysis of microbial transcriptomic mRNA sequences revealed active cyanobacterial populations, genes (especially those associated with toxin release, nitrification and phosphorus utilization). A manuscript is	producing, etc.			
		and phosphorus utilization). A				
		preparing. 4. Evaluation of efficacy of				
		microcystin treatment using qPCR and RT- qPCR targeting on MC producing genes.				
The Use of a Polyphasic Approach to Track the Presence of Cyanobacteria-	Develop a molecular toolbox that can identify and detect the genetic signatures of cyanobacterial and non- cyanobacterial targets linked	Year 3 of 4-year project.	Sampling and laboratory work underway.	USEPA	Jorge Santo Domingo santodomingo. jorge@epa.gov	2019

Producing Toxins, Toxin Production, and Toxin Inactivation	to toxin production.					
Develop Analytical Methods to Detect and Quantitate Human Exposures to Algal Toxin.	Develop analytical methods to detect and quantify human exposures to algal toxins.	Methods to detect human exposure to multiple paralytic shellfish toxins are developed, validated and have been applied to clinical samples.	Methods to detect human exposure to domoic acid and microcystins developed and validated.	CDC	Elizabeth Hamelin ehamelin@cdc. gov	2020
Isolate and Purify Caribbean Ciguatoxin-1 (C- CTX-1) Standard from Naturally Incurred Finfish	Generate C-CTX-1 purified standard reference material.	Fish collected extraction begun.	Bulk extraction and purification ongoing.	FDA	Sara Handy Sara.Handy@f da.hhs.gov	2020
IWG-HABHRCA Subgroup on Certified Reference Materials (CRMs)	The IWG-HABHRCA recommended the development of an interagency group specifically tasked with examining the possibility of developing CRMs and other standardized and validated detection and analysis methods. CRMs are critical tools used by nearly every branch of science to provide the fundamental understanding required to accomplish this goal. The project will make specific	The CRM subgroup has created communications materials outlining and explaining CRMs, analytical methods, and their necessity.	The group will create additional products, as necessary, and will continue to meet to share ideas and information.	NOAA	Caitlin Gould Caitlin.gould@ noaa.gov	2020

	recommendations for products, to increase public awareness about CRMs and analytical methods for HAB toxins, to foster strategic federal and private partnerships to accelerate CRM development, and to further coordinate federal action under the HABHRCA.					
Develop Analytical Methods and Reference Materials	Analytical methods and reference materials are advanced in concert with other Federal agencies participating in the IWG- HABHRCA to support the development of standardized methods and training for testing laboratories and validation of their use to assure accurate and reproducible measurements nationwide.	CRM information document and goal of the subgroup completed and to be distributed to stakeholders.	The project will make specific recommendations for products, to increase public awareness about CRMs and analytical methods for HAB toxins, to foster strategic federal and private partnerships to accelerate CRM development, and to further coordinate federal action under the HABHRCA.	NOAA	John Ramsdell john.ramsdell @noaa.gov Mary Bedner, NIST mary.bedner@ni st.gov	Ongoing
Develop Laboratory Methods for Evaluating Understudied Toxins	Continue expansion and validation of laboratory cyanotoxin detection techniques into all water	Several reports and journal articles have been published and are available in the	Future reports and journal articles will be made available	USGS	Jennifer Graham (jlgraham@usg s.gov)	Ongoing

and to Support Research Goals in Relevant Matrices.	types including lakes and reservoirs, rivers and streams, wetlands, estuaries, and groundwater to capture in situ production and toxin load contributions from inland transport.	USGS Publications Warehouse using the search terms "harmful algal blooms" "cyanotoxins," and/or "algal toxins" (https://pubs.er.usgs.g ov/	through the USGS Publications Warehouse at <u>https://pubs.er.us</u> gs.gov/			
Conduct studies on to Action	oxins in food, and on toxin mixt Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expecte d Date of Complet ion
Yurok Tribe STAR Grant - Identifying, Assessing and Adapting to Climate Change Impacts to Yurok Water and Aquatic Resources, Food Security and Tribal Health	Identify areas of water resource vulnerability and resiliency, assess impacts on Yurok food security and tribal health, and increase the Tribe's adaptive capacity to prepare and respond to climate change. Goals are to improve understanding of current and future climate change impacts on water resources; increase awareness of climate change impacts on key subsistence foods, vulnerable sub- populations and tribal member health; and improve	Completed sampling and verification of domoic acid and paralytic shellfish poison levels in marine mussels; assessed location and 16 months temperature data on 27 tributaries and 19 springs; located public and private source water intakes; assessed domestic water sources for waterborne disease; conducted passive	Develop culturally meaningful educational materials for distribution and f or their website.	USEPA	Cynthia McOliver, McOliver.Cynt hia@epa.gov	2018

	tribal capacity to monitor, communicate, and prepare for climate change impacts. Increasing HABs and cyanotoxin impacts to fisheries (key subsistence foods) are being evaluated.	sampling with Solid Phase Adsorption Toxin Tracking (SPATT) for toxins associated with harmful algal blooms in 19 creeks and 4 Klamath River mainstem sites. Additional outcomes are available from Year 3 annual report on the EPA Research Grants website, https://cfpub.epa.gov/ ncer_abstracts/index. cfm/fuseaction/displa y.abstractDetail/abstr act/10249/report/201 7				
A survey of the composition and purity of commercially available cyanobacteria toxin standards	Survey the composition and purity of commercially available cyanobacteria toxin standards from a range of vendors.	Year 2 of 3-year project.	Laboratory work currently underway.	USEPA	Neil Chernoff chernoff.neil@ep a.gov	2019
Comparative toxicity of microcystin congeners -RR, -LR, -LA, -YR, -LY, -LF	Evaluate the oral toxicity of microcystin congeners for which little peer-reviewed data currently exists.	Year 3 of 4-year project.	Laboratory work currently underway	USEPA	Neil Chernoff; chernoff.neil@ep a.gov	2019
Effect of cyanobacterial	Investigate the impact of cyanobacterial toxins on	Year 3 of 4-year project	Laboratory work currently	USEPA	Vicki Richardson	2019

toxins on human cell	human intestinal epithelial		underway.		richardson.vic	
lines	cells and human hepatocytes.				ki@epa.gov	
Mechanism of	This study seeks to identify	Year 3 of 4-year	Laboratory work	USEPA	Neil Chernoff	2019
cylindrospermopsin	the cause(s) of coagulopathy	project.	currently		chernoff.neil@ep	
(CYN)-induced	(bleeding) in mice from		underway.		a.gov	
toxicity in	exposure to					
mammalian models	cylindrospermopsin.					
Toxicity and	Alexandrium monilatum ,an	Project initiated	New information	NOAA	Quay Dortch	2020
potential food-web	emerging toxic HAB in the	8/31/17	would be		quay.dortch@	
impacts of	Chesapeake Bay and its toxin		obtained on the		noaa.gov	
Alexandrium	goniodomin A (GDA), have		impacts of A.			
monilatum and its	caused mortalities of wild		monilatum and			
toxins	and aquaculture fish and		its toxin,			
	shellfish. Through a		Goniodomin A,			
	combination of laboratory		on finfish and			
	and field experiments,		shellfish both in			
	examine impact and tropic		the laboratory			
	transfer of GDA on		and in the field.			
	sheepshead minnows, brine		This will be used			
	shrimp, copepods, oysters,		to mitigate the			
	blue crabs, menhaden,		effects of this			
	stripped bass in order to		emerging HAB			
	minimize impact on		on mariculture			
	aquaculture and wild		and oyster			
	harvests.		restoration			
			practices.			

Development of a	Develop a coupled	Project initiated	A model would	NOAA	Quay Dortch	2020
Mechanistic ROMS-	hydrodynamic-	8/31/17	be developed for		quay.dortch@	
RCA-HAB model	biogeochemical model		seasonal		noaa.gov	
for predicting	(ROMS-RCA) as a new		predictions of			
Prorocentrum	HAB model for <i>P. minimum</i>		Prorocentrum			
minimum and	and K. veneficum in the		minimum and			
Karlodinium	Chesapeake Bay to address		Karlodinium			
veneficum blooms in	the long-term impacts of		venificum in CB.			
Chesapeake Bay	nutrient enrichment and		This would			
	climate change on HAB		provide an			
	events, fisheries and shellfish		important tool to			
	habitat.		the CB			
			management			
			community in			
			terms of a HAB			
			forecast model			
			that includes			
			nutrient drivers			
			and mixotrophy			
			as important			
			controlling			
			factors			

CIGUATOX: A study of Gambierdiscus "super bugs" and ciguatoxin fate in coral reef food webs	Characterize ciguatoxin production and flux into Caribbean reef food webs for prediction and prevention of Ciguatera Fish Poisoning (CFP) by identifying <i>Gambierdiscus</i> "super bugs" and development of molecular probes to characterize community structure in field samples, toxin detection methods and reference material, and a numerical toxicity model.	Project initiated 8/31/17	The predictive model on CFP occurrence will be validated and demonstrated. Forecast tools and risk models for CFP will aid in developing management strategies to minimize human illness.	NOAA	Marc Suddleson marc.suddleso n@noaa.gov	2020
Develop more-effectiv	e HAB suppression and contro	l methods that have mir	nimal environmenta	l effects and	lower cost.	
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expecte d Date of Comple tion
0 0		In April 2017, the	Continued	USEPA	Sue Keydel	2018
alum at Pinto Lake,	Lake with alum to mitigate	majority of the Lake	implementation of		Keydel.susan@e	

HAB Mitigation using	Successful treatment of Pinto	In April 2017, the	Continued	USEPA	Sue Keydel	2018	
alum at Pinto Lake,	Lake with alum to mitigate	majority of the Lake	implementation of		Keydel.susan@e		
City of Watsonville,	severe blooms, which have	was treated with Alum	watershed source		<u>pa.gov</u>		
CA	resulted in lake closure over	(118 thousand gallons	management,				
	<i>,</i>		targeting eroding				
	to over 33 sea otter deaths in	aluminum sulfate, aka	riverbanks and				
	Monterey Bay. The project is	alum, and a pH	fertilizer use.				
	funded by a CWA 319 sub	buffered sodium	Quarterly				
	grant awarded by California's	aluminate) Treatment	monitoring of TP				
	NPS Program.	resulted in an average	and TN in water				
		phosphorus reduction	post- treatment;				
		of 89 percent, with an	monitoring				

Control of HAB	This project is a follow-up to	reduction of 30%. Toxic blooms were averted through the summer season. The first toxic bloom began 10/24/17.	watershed BMPs during storm season 2017-2018. Continue with	NOAA	Marc	2018
booms - The dinoflagellate- specific algicide IRI- 160: Isolation, characterization and potential impacts on ecologically relevant metazoan species	a previous PCMHAB study that showed great promise for field applications. This study will complete isolation of the bacteria-produced algicide and apply it in laboratory experiments with single and mixed species. In addition, a preliminary field demonstration will be conducted, scaling up production of the compound or bacteria for application in the field.	Continued work to isolate the algicidal compound(s) in the algicidal filtrate, IRI- 160AA, focusing on amines – identified four specific amines (putrescine, diethylamine, and ammonium) and conducted bioassays with them to determine response of several dinoflagellates species and a control cryptophyte species. Two papers were published during this period describing research on the bacterial algicide, IRI-160AA, and its impacts on dinoflagellate morphology and	algicide isolation and characterization, develop an assay for the algicidal compound(s) in water and sediments. continue to evaluate the effects of polyamines on dinoflagellates. Microcosm experiments with natural microbial populations will be conducted to determine responses of dinoflagellates and other microbial species to repeated dosing of the		Suddleson Marc.suddleso n@noaa.gov	

		biochemistry.	algicide, and the			
			effects of the			
			algicide on			
			microzooplankto			
			n grazing			
Sorption and	Evaluate the use of reactive	Year 3 of 4-year	Field testing of	USEPA	Mallik	2019
recovery of total	media that will act as a	project.	reactive media		Nadagouda;	
phosphorus	sorbent for soluble and total		underway in		nadagouda.malli	
	phosphorus associated with		Clermont County		karjuna@epa.gov	
	agricultural runoff and/or		Ohio waste			
	effluent from wastewater		water treatment		Ed Barth	
	treatment facilities.		plant.		Barth.ed@epa.	
			1		gov	
Floating Vegetation	RESES grant for using	Floating vegetated	Monitoring and	USEPA	Daniel	Ongoing
Islands	Traditional Environmental	islands were built and	measurement of		Heggem	0 0
	Knowledge (TEK) for the	installed - the	water quality		Heggem.Danie	
	development of leading	Colorado River	through the use		l@epa.gov	
	indicators of ecosystem	Indian Tribes island	of data loggers is		10	
	function, such as for water	was installed in Nov	ongoing.		Bob Hall	
	quality standards, biological	2016, and the	0 0		Hall.RobertK	
	criteria, and control of	Chemehuevi Tribe			@epa.gov	
	HABs. This grant was	island was installed			- T	
	awarded by ORD to	in Feb 2017.				
	USEPA's Region 9 Office to	Workshops on water				
	collaborate on research	quality were also				
	benefiting communities for a	conducted with tribal				
	qualitative study of the	partners.				
	presence of microcystins	pur mors.				
	during, and outside of,					
	harmful algal blooms					
	(HABs).					
Undonstand the influ		havia danagitian of mut	ionto and other or	twibuting for	tong on the construction	
•	ence of climate change, atmosp its of HAPs and hyporia	neric deposition of nutri	ienis, and other con	invuing jac	tors on the occuri	ence,
jrequency, ana severi	ity of HABs and hypoxia.					

Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expecte d Date of Comple tion
Observations and Modeling of Narragansett Bay hypoxia and Its response to nutrient management	In 2030, an intensive hypoxia event in Narragansett bay resulted in a large fish kill, prompting a new state law to impose N limits on wastewater treatment facilities that are the dominant source of nutrient load to the Bay. In 2013, the 50% N reduction target was met. This project used a multiple modeling approach to quantitatively assess the dynamic relationship between N loading and hypoxia, with the goal of informing the state of Rhode Island of the effectiveness of this N load reduction in mitigating hypoxia.	The project provided confirmatory evidence that the goal to reduce nitrogen loading into the Bay was achieved, determined, through quantitative analysis of monitoring and modeling results, that the N reductions led to a Bay-wide shift from eutrophic to oligotrophic conditions, and through independent confirmation from hypoxia models, informed the EPA and State Department that an additional 25% reduction in nitrogen loading is needed to comprehensively reduce hypoxia in all affected Bay regions.	N/A - Completed	NOAA	Alan Lewitus Alan.lewitus@no aa.gov	2016
Lake Erie	USEPA worked with Canada	Multiple models were	N/A (complete)	USEPA	Santina	2016

Ecosystem	and the states in Lake Erie	employed to generate			Wortman	
Modeling and	basin to identify through	load response curves			wortman.san	
Targets	scientific assessment and	of eutrophication			tina@epa.go	
Development	modeling, reductions	indicators. A suite of			V	
	necessary to curb HABs and	revised phosphorus				
	hypoxia in Lake Erie.	load and				
	• •	concentration targets				
		were formally				
		adopted by the				
		United States and				
		Canada under the				
		Great Lakes Water				
		Quality Agreement in				
		2016.				
USGS partnerships	Through grants to the Water	Projects have been	Project	USGS	Earl Greene	2019
with universities to	Resources Research Institutes	funded and research	completion and		eagreene@u	
conduct HABs	(WRRI), the USGS is	is in progress. Project	delivery of final		sgs.gov	
research	working with university,	details are available	reports or journal			
	local, and state partners to	through the USGS	articles.			
	better understand and predict	State Water				
	HABs. Water Resources	Resources Research				
	Research Institutes in the	Institute Program				
	District of Columbia,	(WRRI) website				
	Arkansas, Georgia, Indiana,	https://water.usgs.gov				
	Kentucky, North Dakota,	/wrri				
	Ohio, Oklahoma, Oregon,					
	Pennsylvania, Washington,					
	and Texas have ongoing					
~ ~ ~ ~ .	studies.				T H N f H	
Green Bay Hypoxia:	The goal of this project was	The scenario-based	N/A - Closed out	NOAA	Felix Martinez	2017
Biogeochemical	to forecast the impacts of	hypoxia forecast			Feliz.martinez	
dynamics,	hypoxia in the lower part of	models were made			@noaa.gov	
watershed inputs	Green Bay in Lake	available to users				

					l	1
and climate change	Michigan. Impacts were	through a				
	assessed with a	management oriented				
	comprehensive set of linked	platform integrating				
	models of watershed loading,	watershed and lake				
	biogeochemical cycling, and	models which include				
	hydrodynamics that are	visualizations, tables,				
	informed by downscaled	figures, etc. that				
	regional climate scenarios to	illustrated watershed				
	assess both current and	and bay responses to				
	future conditions.	changes in nutrient				
		loading and climate.				
		This web-based				
		interactive prediction				
		modeling tool can be				
		used to inform				
		resource agencies of				
		the efficacy of				
		watershed nutrient				
		reduction strategies in				
		reducing hypoxia and				
		restoring water				
		quality.				
Assess conservation	This project aims to develop	Using a paired edge of	Effects of	USDA	Kevin King	2020
practices and	and evaluate practices for	field approach and	specific 4R	ARS	kevin.king@ars.u	
develop	reducing surface water	data from surface and	practices as well		sda.gov	
conservation	contaminants in artificially	subsurface (tile	as the impact of			
planning tools that	drained landscapes; evaluate	drainage) practices	stacked practices			
can improve	practices to reduce runoff and	such as surface	is still to be			
agricultural water	sediment losses from urban	amendments	completed.			
quality in the	sites; and develop and	(gypsum), subsurface	Treatments			
Midwest	evaluate tools to optimize	P application, and the	(practices) have			
	placement of conservation	4Rs have been	been identified			
	practices within Midwest	evaluated.	and should be			

	watersheds for improved environmental benefits.		implemented following crop harvest.			
Environmental effects and services resulting from prevailing and innovative land use and management practices within poorly drained Midwest landscapes	This ARS project aims at quantifying edge-of-field (EOF) and watershed scale environmental and ecologic impacts of conservation practices in three watersheds (Upper Scioto, Upper Wabash, Western Lake Erie Basin) in Ohio.	A network consisting of 20 paired edge-of- field sites has been established. The EOF sites generally contain surface and subsurface (tile drainage) collection point. Baseline data has been collected on the majority of sites.	Treatments have been identified for a majority of sites and visits with producers have been completed. Treatments should be implemented once harvest is complete.	USDA ARS	Kevin King <u>kevin.king@ars.u</u> <u>sda.gov</u>	2020
Integrating Cell and Toxin Cycles of Karlodinium veneficum (Kf) with Key Environmental Regulators: In Situ Studies of Predictive Determinants for Bloom Toxicity	This study will assess the factors controlling Kf toxicity in Chesapeake Bay and other mid-Atlantic estuaries, and develop a management tool (mitotic index) for rapid and simple prediction of the potential of a bloom for becoming toxic or increasing toxicity potential.	The project has identified the initiation process for karlotoxin biosynthesis being the photorespiration product glycolate. The enzyme ketosynthase is found to act as a scaffold for karlotoxin production. Tasks to develop methodology for comparing digital microfluorimetry to flow cytometry and	Managers will be trained on how to utilize the mitotic index for rapid toxic bloom detection, and incorporate it into regular monitoring programs.	NOAA	John Wickham john.wickham @noaa.gov	2018

Resolving the Effects of Resource Availability, Predation, and Competition on Brown Tide Dynamics via Metatranscriptomics	The purpose of this project is to develop markers that can be used in the field to elucidate the factors causing brown tides of <i>Aureococcus</i> <i>anophagefferen</i> , including specific anthropogenic factors such as nitrogen, phosphorus, organic matter, metals, low light, and others.	optimization of the in situ growth rate estimation using the mitotic index have progressed significantly. Accurate image analysis has been achieved using the flat-field/shading correction method. Field sampling in Baltimore Harbor is delayed to summer 2018. Conducted laboratory experiments to identify how pelagic predators, organic matter, Se, N, and P, affected growth rates of <i>Aureococcus</i> (brown tide). Conducted field surveys across the south shore of Long Island in New York during spring and summer in 2015 & 2016. Quantified plankton and nutrients. Conducted	Finish sequencing, analyzing and comparing transcriptomes and other samples from lab & field experiments & natural populations Update Suffolk County Harmful Algal Bloom Action Plan.	NOAA	Quay Dortch quay.dortch@no aa.gov	2018
--	---	--	---	------	---	------

		14 field experiments				
		in 2015 & 2016 to				
		assess transcript				
		regulation in				
		Aureococcus and co-				
		occurring				
		phytoplankton				
		populations during				
		field experiments that				
		alter levels of				
		nutrients, light,				
		metals and predators.				
		Collected				
		transcriptome				
		samples during all				
		culture and field				
		sampling. Analyzed				
		some transcriptome				
		samples from field				
		surveys conducted in				
		years prior to the				
		award.				
		Determined that P as				
		well as N from DON				
		drives brown tides				
		but viral infection not				
		a factor.				
		Developed Suffolk				
		County Harmful				
		Algal Bloom Action				
		<u>Plan</u> .				
Climate Change	The goals of this project are	Copepod grazing	Grazing	NOAA	Beth Turner	2018
Impacts on the	to investigate the effects of	found to be lower on	experiments to		Elizabeth.Turn	

Physiology and	climate change on HAB	toxic algal species	determine effects		er@noaa.gov	
Trophic Dynamics	species and the consequences	compared to non-	of higher temp		er e nouu.gov	
of Harmful Algal	of altered toxicity and	toxic species, but no	and CO2 on			
Species from	nutritional quality of HAB	effect was found on	toxicity and			
Delaware's Inland	species on micro- and	egg production rates.	nutritional			
Bays	mesozooplankton grazers	egg production rates.	quality for			
Days	mesozoopiankton grazers		copepod grazers.			
Agriculture and	This program seeks to	Annually funds	Some highlights	USDA	Nancy	2018
Food Research	support research projects to	research projects to	from funded	NIFA	Cavallaro	2010
Initiative (AFRI):	evaluate the physical and	advance this	projects are:	NII A	ncavallaro@nif	
Nitrogen and	biogeochemical processes	area. Projects periods	Increasing our		a.usda.gov	
Phosphorus Cycling	affecting the flow, fate and	are up to four years	understanding of		a.usua.gov	
Competitive Grants	transport, transformation,	are up to rour years	soil P availability			
1	▲ ·		-			
Program	movement, and storage of		and mobility and how these			
	nitrogen and phosphorus in		characteristics			
	plant and animal agricultural					
	systems.		vary with soil type			
			and agriculture			
			practices is			
			leading to			
			reducing P loss			
			from agriculture			
			systems and			
			contribute towards			
			science based			
			management			
			plans. Another			
			project			
			demonstrated that			
			diversified			
			cropping systems			
			lead to a more			
			diverse soil			

		I	· · · · · · · · · · · · · · · · · · ·		1	1
			microbial			
			community			
			reducing the			
			number of			
			ammonia-			
			oxidizing bacteria,			
			thus minimizing			
			nitrogen losses.			
			Other work has			
			shown that			
			nitrogen transport			
			in watersheds			
			during low flow			
			conditions can			
			increase			
			dramatically with			
			large storms such			
			as those			
			associated with			
			tropical			
			depressions and			
			hurricanes.			
National Integrated	NIWQP grants contribute to	Development of new	Completion of	USDA	James	2019
Water Quality	the improvement of the	GIS-based assistive	ongoing grant	NIFA	Dobrowolski	
Program (NIWQP)	quality and conservation of	tools to support the	projects and		jdobrowolski@	
	our Nation's water resources	adoption of best	delivering of the		nifa.usda.gov	
	through research, education,	management	research results		U	
	and extension activities.	practices in polluted	to stakeholder in			
	Projects funded through this	watersheds. Adoption	forms of			
	program will work to solve	of on-farm water	extension. The			
	water resource problems by	storage systems to	last year this			
	advancing and disseminating	provide irrigation	program			
	the knowledge base available	water, while	received			

	to agricultural, rural, and urbanizing communities.	capturing nutrient- rich tailwater in the Mississippi Delta. Expansion of goCrop, an integrated mobile technology to enhance nutrient management program implementation, to include California.	appropriation was 2014, so there are no new awards.			
Ecological contributors to CyanoHABs	Relate sediment densities of cyanobacteria to observed densities of pelagic cyanobacteria to determine if specific areas serve as sources for initial cyanobacterial stocks.	Year 3 of 4-year project.	Field sampling underway.	USEPA	Alan Lindquist lindquist.alan@e pa.gov	2019
Understanding harmful algal blooms and protecting the ecosystem and human health from their toxins.	What are the ecological impacts of algal toxins on aquatic life through direct exposure and through food chain bioaccumulation? Approach will be to assess whether algal toxins inhibit zooplankton grazing behavior and population dynamics, and impact of benthic filters. Test whether simultaneous and sequential exposure to multiple toxins, particularly the combination of microcystins and cylindrospermopsin, and	Year 3 of 4-year project.	Sampling and laboratory work underway. Acute toxicity Tests have been conducted on Lake samples from Harsha using lysed and unlyzed samples. acute C dubia, larval fathead minnow, mayfly and amphipod tests conducted on samples. No	USEPA	James Lazorchak lazorchak.jim@ epa.gov	2019

	microcystins and anatoxins pose accumulative or synergistic risks to aquatic life.		acute toxicity found. In house cultures of M aeruginosa and A flosaque are currently being tested. Ohio EPA has been contacted to test lakes Erie bloom samples.			
Modeling reservoir algal community dynamics to link watershed to drinking water treatment and water recreation beneficial uses.	Provide a computational and modeling framework for linking watershed nutrient loadings to the degradation of reservoir water quality and resultant risks to human health and loss in beneficial uses.	Year 3 of 4-year project.	Database development.	USEPA	Christopher Nietch nietch.christophe r@epa.gov	2019
A Data-Intensive Investigation of Temperature Impacts and Bloom Modeling.	Investigate the connections between air temperature, photic zone temperature and cyanobacterial bloom probabilities.	Year 3 of 4-year project.	Database development underway. An "R" based tool for lake morphometry has recently been released: https://cran.r- project.org/web/ packages/lakemo rpho/index.html		Betty Kreakie kreakie.betty@ep a.gov Jeff Hollister, hollister.jeffrey@ epa.gov	2020
Cross-Regional Comparison of	Identify and quantify factors controlling <i>Dinophysis</i>	Project initiated 8/31/17.	The study would extend the	NOAA	Quay Dortch quay.dortch@nd	2020

Dinophysis Bloom	blooms and Diarrhetic		Imaging Flow		aa.gov	
Dynamics, Drivers,	Shellfish Poisoning (DSP)		CytoBot (IFCB)		_	
and Toxicity	across the US as a means of		network			
	developing optimized		nationally,			
	regional early warning		advance			
	systems and management		understanding of			
	plans.		the drivers and			
			reason for the			
			sudden national			
			spread of			
			Dinophysis and			
			DSP, and			
			advance toward			
			creation of a			
			national			
			monitoring and			
			early warning			
			system			
Expanding the	Compare three analytical	Project initiated	Submit proposals	NOAA	Quay Dortch	2020
Options for	methods for Diarrhetic	8/31/17.	to the ISSC for		quay.dortch@nc	
Monitoring of DSP	Shellfish Poisoning toxins in		approval of most		aa.gov	
by Promoting the	shellfish meats: LC-MS/MS,		effective method			
ISSC	lateral flow immunoassay		for incorporation			
Approval of LC-	and phosphatase inhibition,		into the NSSP,			
MS/MS and Two	submit proposals to the ISSC		and train users			
Rapid Screening	for approval for		the approved			
Approaches	incorporation into the		methods			
	National Shellfish Sanitation					
	Program (NSSP), and train					
	users the approved methods.					

Linking Process	Add toxin production to	Project initiated	Cyanotoxin	NOAA	Felix Martinez	2020
Models and Field	models of cyanobacterial	8/31/17	forecast is		felix.martinez	_0_0
Experiments to	blooms in Lake Erie by (1)		demonstrated		@noaa.gov	
Forecast Algal	examination of historical		and applied as		0 110 111 80 1	
Bloom Toxicity in	data for correlation between		early warning			
Lake Erie	environmental variables and		alert to drinking			
	toxin concentrations, (2)		water facilities.			
	incorporation into numerical					
	models of ecological and					
	physical processes with					
	hindcasting, nowcasting, and					
	forecasting capabilities, and					
	(3) conducting field and					
	laboratory experiments to					
	directly determine the					
	influence of nitrogen, light,					
	temperature, and other					
	factors on the production and					
	decay of HAB toxin.					
Predicted impacts of	The purpose of this project is	During the first year	The modeling	NOAA	Kimberly	2021
climate change on	to quantitatively predict the	of the project, the	results will be		Puglise	
the success of	impacts of future changes in	input datasets and	translated into		Kimberly.pugli	
alternative	climate and anthropogenic	formulas were	web based tools		se@noaa.gov	
management actions	nutrient inputs on the spatial	updated and	for use by			
in the Chesapeake	and temporal extent of	evaluated for five of	regional			
Bay	hypoxia in Chesapeake Bay,	the six separate	managers and			
	and on the effectiveness of	project models (three	municipalities.			
	various alternative	watershed models,	These model			
	management actions	two estuarine models,	outputs will be			
	designed to reduce hypoxia	and 1 oyster	compared to			
	and improve water quality.	population model).	those currently			
	This project is a	Preliminary model	used for			
	collaboration with EPA and	simulations show that	regulatory			

	USGS.	climate change will negatively affect hypoxic conditions in the Chesapeake Bay, but this effect will be trumped by positive impacts resulting from mandated nutrient reductions.	purposes, and the results are eagerly anticipated by Chesapeake Bay resource managers.			
Explore temporal and spatial variability of water quality and cyanobacteria in two Rhode Island ponds	Increase our understanding of how water quality and cyanobacteria blooms vary across space and time between two ponds with different ecological conditions and history.	To date, we have completed one field season of sampling; on average conducting twice weekly sampling 7 sites across each pond.	Continues monthly sampling of ponds, as feasible, through winter and more intense sampling during the bloom season (approx. June-October).	USEPA	Jeff Hollister hollister.jeff@ epa.gov	Ongoing
NGOMEX and CHRP	HABHRCA-authorized competitive programs to advance the development and application of scenario- based ecosystem models to quantitatively evaluate hypoxia causes and impacts, using an integrative modeling approach, and develop outreach tools to communicate advanced understanding to coastal managers and other stakeholders.		Advance development, application of scenario-based ecosystem models to quantitatively evaluate hypoxia causes and impacts, using an integrative modeling approach, and develop outreach	NOAA	Alan Lewitus alan.lewitus@n oaa.gov	Ongoing

Develop case definitio	ons for the spectrum of HAB-re	lated illnesses, and prod	tools to communicate advanced understanding to coastal managers and stakeholders. When funding is available, NCCOS will release an RFP.	tic guidand	ce for the spectru	m of
- •	ith exposure to HAB cells and t	· •	iace cuntear merapear	ne guiaane	ce joi ine specifia	n oj
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expecte d Date of Comple tion
Use public health surveillance data to characterize and inform understanding of HAB-associated	Publish a summary of data collected in the One Health Harmful Algal Bloom System (OHHABS).	OHHABS launched in 2016, with additional components added in 2017 to support data collection and	Additional data collection, data review process, and surveillance report to be completed	CDC	Virginia Roberts <u>evl1@cdc.gov</u>	2020

Strengthen long-term	Strengthen long-term HAB and hypoxia monitoring activities								
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expected Date of Completi on			
Characterize and/or quantify the structure, function, and key processes of ecosystems in agricultural settings.	This ARS project evaluates how nutrients, pesticides, and sediments interact with watershed hydrology to influence mechanisms regulating water quality and aquatic ecosystem structure and function in agricultural watersheds; examine effects of water flow, climate- change-induced drought, and agricultural nutrient contaminants on stream microbial productivity and nutrient processing; and examine associations between fish species composition, hydrologic connectivity, and hypoxia in agricultural watersheds.	Ecological assessments identified seasonal patterns of excess sediment and nutrients as being influenced by changes in cropping patterns and conservation practices in shallow, low- gradient, low-flow bayous. Organic matter processing studies demonstrated rapid breakdown of agriculturally derived and natural riparian organic matter combined with excessive nutrients influenced dissolved oxygen dynamics in bayou waters. A study on depth manipulation through a weir was conducted	Sediment denitrification is underway on cores from various aquatic ecosystems (ditches, lakes, wetlands, tailwater recovery systems) to gain an understanding of denitrification rates and how they differ across habitats contributing to hypoxia Studies underway on the use of mixed vegetation in mitigating nutrients in agricultural runoff.	USDA ARS	Martin Locke, Research Leader martin.locke@a rs.usda.gov Matt Moore, Lead Scientist matt.moore@ar s.usda.gov Ron Bingner, Michael Jenkins, Richard Lizotte, Jason Taylor, Lindsey Yasarer	2020			

Appendix 2. Actions to Strengthen and Integrate New and Existing Monitoring Programs

		during a drawdown experiment to help understand how water depth, flow, and quality varies seasonally as farmers utilize bayous as additional sources of surface water irrigation.	Studies continue in LTAR / CEAP watershed (Beasley Lake) examining long- term effects of conservation practices on reduction of contaminant load and restoration of water quantity, quality, and lake productivity.			
Determining the	Have an understanding of	Approximately 40	Publishing results	USEPA	Jeffery Stone	2017
presence of	what cyanotoxins are present	drinking water	in Fall 2017		Jeffery.stone@a	
cyanotoxins in raw	in raw water sources and	sources were sampled	Arkansas		<u>rkansas.gov</u>	
water drinking water	determine if cyanotoxins are	twice during the	Drinking Water			
sources for select	removed via conventional	summer of 2017.	Newsletter.		Jatin Mistry,	
Arkansas drinking	filtration. Sampling was	Approximately 10 %			EPA Region 6	
water systems	conducted during Summer	of untreated source			mistry.jatin@ep	
	2017.	water contained			<u>a.gov</u>	
		detectible				
		cyanotoxins. No				
		treated water				
		contained detectible				
		cyanotoxins. This				
		small data set seems				
		to validate the				
		understanding that a				
		conventional surface				
		water treatment plant				

		optimized for disinfection byproducts and turbidity control is effective for eliminating				
Evaluation of crowd sourcing to locate and inform the public of algal blooms	A Regional Research Partnership Program (R2P2) Project between RTP/ORD and EPA Region 9 to identify if qualitative community perception of water quality via crowd sourced, citizen science input can support community and tribal management of lakes	cyanotoxins. Quantitative field monitoring and satellite derived water quality data, was used to develop Ushahidi code, which was tested, presented and transferred to tribes around Clear Lake, CA.	Project completed	USEPA	Blake Schaeffer/ORD <u>schaeffer.blake</u> @epa.gov	2017
Develop and standardize HAB monitoring methods	Publishing standard methods and approaches for field sensors that measure algal pigments, like chlorophyll and phycocyanin, and dissolved organic matter, and correlating these measures to harmful algal blooms and algal toxins.	A USGS Techniques and Methods (T&M) report describing the use of water quality sensors for measurement of algal pigments and fluorescent dissolved organic matter has been peer reviewed and is planned for publication in FY18. The T&M report will contain quality assurance and quality control specifications	Develop and standardize HAB monitoring methods	USGS	Jennifer Graham jlgraham@usgs. gov	2018

		for continuous				
		measurement and				
		calibration of sensors.	T 1			2010
Clear and Present	The purpose of this project is	A new toxin,	Improved	NOAA	Marc Suddleson	2018
Danger: Monitoring	to ensure that Washington	azaspiracid 59 has	capability for		Marc.Suddleson	
and Management of	State managers are fully	been identified in	Washington State		@noaa.gov	
Lipophilic Shellfish	trained on how to use	Washington State,	managers to			
Toxins in	transfers detection and	produced by	detect and			
Washington State	analytical technologies,	Azadinium poporum.	analyze lipophilic			
	helping existing water and	In total, 4 Azadinium	shellfish toxins.			
	shellfish monitoring	species are present in				
	programs to add detection	the region.				
	(rapid toxin screening) and					
	quantification of DSP and					
	AZP to their early warning					
	and rapid response protocols.					
Training Course on	Provide coordinated training	Training courses held	Training course to	NOAA	Quay Dortch	2018
the Identification of	for state and local officials to	in 2016 and 2017.	be held in 2018		quay.dortch@noa	
Harmful Algae in	improve regional capabilities		and transition		a.gov	
United States	for HAB monitoring,		from NOAA			
Marine Waters	assessment, forecasting, and		support to fee			
	response. Coordination of		support will be			
	resources among agencies		completed by			
	could help advance training		2019.			
	efforts, particularly if					
	standardized methods are					
	used. This project is a					
	collaboration with FDA,					
	CDC and IAEA.					
National	The program is a cooperative	The NTN provides a	This program	USDA	Karelyn Cruz	2018
Atmospheric	effort between many	long-term record of	provides essential	NIFA	karelyn.cruz@	
Deposition Program	different groups, including	the acids, nutrients,	continuous		NIFA.USDA.G	
	federal, state, tribal and local	and base cations in	monitoring of		OV	
	reactar, state, trout and focul	and suse earliers in	monitoring of		0,	

	governmental agencies, educational institutions, private companies, and non- governmental agencies to measure atmospheric pollution and its effect on the environment.	U.S. precipitation across nearly 300 locations in the United States. This program provides key observations on nitrogen deposition, which plays a role in development of hypoxia.	atmospheric deposition. The program will be recompeted at the end of 2018.			
Puget Sound-wide Zooplankton Monitoring Program	The purpose of this project is to continue plankton monitoring throughout Puget Sound that started in 2014 to capture food web dynamics and ancillary water quality. This project is funded via PS NEP, led by Long Live the Kings Organization, and is a collaboration with the University of WA, Tulalip Tribes, Nisqually Tribe, Lummi Nation, Port Gamble S'Klallam Tribe, King County, NOAA Fisheries, and KWIAHT.	Preliminary data collected 2014-2016 additional data will be used to calibrate ecosystem model.	Calibration of foodweb model.	USEPA	Michael Rylko rylko.michael@ep a.gov	2018
Small Stream Monitoring in the Lake Erie Watershed	The USGS Water Science Centers in Wisconsin, Ohio, Michigan, and Indiana are collaborating with the GLRI in placing streamflow and water quality monitoring stations in small streams at	Progress and publications can be found on the Web at: <u>https://www.usgs.gov</u> /centers/wisconsin- water-science- center/science/edge-	monitoring will be completed in 2018 followed by report preparation and publication in the next two years	USGS	Jon Hortness hortness@usgs. gov	2020

	(1 1 f 1 (* 1	field use with the				
	the edge of agricultural fields	field-monitoring-				
	where conservation practices	great-lakes-				
	are being implemented to	restoration				
	better understand the effects					
	of agricultural conservation					
	practices on water quality.					
	The study sites include the					
	Fox River, which flows into					
	Green Bay; a tributary to the					
	Maumee River that flows					
	into the western basin of					
	Lake Erie; and a tributary to					
	the Saginaw River that flows					
	into Saginaw Bay. The					
	results of the GLRI effort					
	will be communicated to					
	interested stakeholders to					
	help guide similar efforts in					
	the Great Lakes. This project					
	is a collaboration with					
	USEPA and ten other					
	Federal agencies.					
New Mexico	In collaboration with the	Water Quality	Temporary	USEPA	Shelly Lemon,	2018
Temporary Standard	state of New Mexico, EPA	Standards Temporary	Standard		NMED	
Implementation for	Office of Science and	Standard	Implementation.		shelly.lemon@s	
Nutrient Thresholds	Technology, EPA Office of	Implementation for			tate.nm.us	
	Wastewater Management,	Nutrient Thresholds.				
	EPA R6, and the New				Jennifer	
	Mexico Municipal League,				Brundage,	
	EPA is providing contractor				Brundage.jennif	
	support to development				er@epa.gov;	
	NPDES discharger specific					
	nutrient threshold temporary				Forrest John, EPA	

	standard implementation guidelines and demonstrations (proof-of- concepts)				R6 john.forrest@epa. gov	
Improving Tools for Monitoring Multiple HAB Toxins at the Land-Sea Interface in Coastal California (HAB-SICC)	Information from this project will be used to inform managers, the public and policy makers regarding the risks posed by occurrence of multiple toxins in the food web including local fish and shellfish. This project includes support for USGS.	The study will build on previous progress to develop a passive sampling monitoring tool (Solid Phase Adsorption Toxin Tracking, SPATT), to enhance the HAB toxin detection capabilities of California state management agencies' monitoring programs. The SPATT sampler would be improved to include routine detection of multiple toxins (e.g. domoic acids, saxitoxin, microcystins, cylindrospermopsin, anatoxin, and okadaic acids).	NOAA will use the information from this study to inform mangers, the public and policy makers regarding the risks posed by occurrence of multiple toxins in the food web, including local fish and shellfish	NOAA	Marc Suddleson marc.suddleson@ noaa.gov	2019
Development and standardization of real time online toxicity monitors	Establish the efficacy using sentinel organisms as Online Toxicity Monitors (OTM) cyanotoxin production.	Year 3 of 4-year project.	Laboratory experiments to establish OTM sensitivity to HAB species and	USEPA	Joel Allen allen.joel@epa. gov	2019

			cyanotoxins will continue. Demonstration of OTM deployment will follow.			
Inland HAB Management	This work seeks to improve the understanding of HAB dynamics found in inland freshwater systems and using a source water monitoring approach and leverage high frequency data to optimize analytical efforts and management.	Year 3 of 4-year project.	Data from three HAB seasons are under review for development of predictive modeling of HAB events.	USEPA	Joel Allen allen.joel@epa. gov	2019
Detecting phytoplankton in water using flow cytometry, microscopy and hyperspectral image analysis.	Explore the feasibility of utilizing these technologies to determine linkages between optical signatures and physiological status of phytoplankton.	Year 3 of 4-year project.	Laboratory work underway.	USEPA	Robert Zucker zucker.robert@ep a.gov	2019
Nutrient Monitoring in the Great Lakes Watersheds	USGS monitors nutrient loads (phosphorus and nitrogen) to the Great Lakes at 24 locations across the basin in the United States to help managers track changes over time. Two additional sites will be added in the Lake Erie basin in 2017 to support nutrient reduction	Monitoring results are reported annually in April for western Lake Erie watersheds by Ohio. These summaries published since 2014 can be accessed at lakeerie.ohio.gov. Concentration and	Monitoring projects are supported by Federal and state funds and may continue beyond 2020 to track improvements in meeting phosphorus	USGS	Jon Hortness hortness@usgs. gov	2020

	strategies developed under	Loading information	loading limits to			
	Annex 4 of the Great Lakes	can be accessed at	western Lake Erie			
	Water Quality Agreement.	http://arcg.is/21i9CU	identified in			
	This project is a	F (USGS) and	Annex 4 of the			
	collaboration with the Great	https://ncwqr.org/	Great Lakes			
	Lakes Restoration Initiative.	(Heidelberg).	Water Quality			
	USGS monitors nutrient	Additional	Agreement.			
	loads (phosphorus and	information on	Agreement.			
	nitrogen) to the Great Lakes	monitoring loads to				
	at 24 locations across the	the Great Lakes can				
	basin in the United States to	be accessed at				
	help managers track changes	https://cida.usgs.gov/				
	over time. Two additional	glri/projects/nearshor				
	sites will be added in the	e_health/forecast_loa				
	Lake Erie basin in 2017 to	dings.html				
	support nutrient reduction	ungs.num				
	strategies developed under					
	Annex 4 of the Great Lakes					
	Water Quality Agreement					
	(GLWQA). This project is a					
	collaboration with the Great					
	Lakes Restoration Initiative.					
	Specifically, enhanced					
	monitoring in western Lake					
	Erie Watersheds is underway					
	to track progress under					
	Annex 4 of the GLWQA					
Oklahoma Reservoir	USEPA Region 6 is	Data aggregation and	Threshold	USEPA	Monty Porter,	2019
Nutrient Threshold	supporting the state of	data exploration.	development.		OWRB	2017
Development	Oklahoma in the		development.		monty.elder@deq.	
	development of nutrient				state.ok.us	
	response indicators that can				<u>button.ub</u>	
	serve as translators for the				Forrest John, EPA	
	serve as translators for the	l			i onose sonni, Li M	

	aviating a normative metric t			DC]
	existing narrative nutrient			R6	
	criteria and be applied in			john.forrest@epa.	
	various water quality			<u>gov</u> ;	
	programs. Modeling tools			I 011	
	will also be developed to			Jacques Oliver	
	provide the necessary			oliver.jacque@epa	
	linkage between the response			<u>.gov</u>	
	indicator endpoint and				
	nutrient concentrations or				
	loads. An additional goal is				
	to review methods for				
	identifying protective				
	downstream values in the				
	watersheds of lakes to ensure				
	attainment of in-lake targets.				
	This project is a				
	collaboration with USEPA				
	Region 6, Office of Science				
	and Technology/NSTEPS,				
	and the Oklahoma Water				
	Resources Board.				
Investigating	The overarching goal of this	Map out diverse	NOAA	John Wickham	2020
Domoic Acid	project is to gain an	domoic acid (DA)		john.wickham@	
Biosynthesis and	understanding of the	congeners;		noaa.gov	
Toxic Bloom	biosynthetic machinery of	Examine		C	
Formation Through	domoic acid in PN and the	biosynthetic			
Pseudo-nitzschia -	influence of marine bacteria	machinery			
Marine	that leads to the synthesis of	believed to			
Bacteria Interactions	domoic acid and other	produce DA;			
	kainoid families, which will	Investigate DA			
	provide fundamental new	production in			
	insights about chemical,	Pseudo-nitzschia			
	molecular and biotic factors	(PN) in			

			ا ۲۰ ۰٫۰]
	at work during PN bloom.		association with			
			bacteria and			
			natural blooms;			
			Use molecular-			
			genetic tools to			
			define PN-			
			bacteria			
			interactions that			
			produce DA; Use			
			Bayesian			
			statistics to assess			
			contribution of			
			bacteria versus			
			other factors in			
			toxic PN blooms.			
Uncovering the	Determine factors leading to	Project initiated	1) Determine the	NOAA	Marc Suddleson	2020
mechanisms behind	Paralytic Shellfish Poisoning	8/31/17	relationship		marc.suddleson@	
wintertime	(PSP) toxins in geoduck		between		noaa.gov	
occurrences of	clams in southeast Alaska,		distributions of			
Paralytic	harvested during a		cysts of the PSP-			
Shellfish Toxicity in	wintertime dive fishery.		toxin producing			
geoduck clam			Alexandrium and			
fisheries in southeast			geoduck toxicity;			
Alaska			2) identify			
			whether cyst			
			ingestion is a			
			mechanism for			
			geoduck clam			
			toxicity; 3)			
			determine if			
			current geoduck			
			harvest and/or			
			management			

			approaches]
			approaches contribute to the			
			frequent			
			occurrence of			
			wintertime			
			toxicity in			
			geoduck clams;			
			and 4) involve			
			geoduck clam			
			dive industry and			
			resource			
			managers in			
			research to ensure			
			project outcomes			
			meet stakeholder			
			information			
			needs.			
An early warning	The purpose is to restore and	The project expands	The Pacific	NOAA	Marc Suddleson	2020
system for Pseudo-	refine the Pacific Northwest	current monitoring	Northwest HAB		marc.suddleson	
nitzschia HABs on	HAB Bulletin by enhancing	infrastructure off WA	Bulletin would be		@noaa.gov	
Pacific Northwest	monitoring and additional	and OR by including	restored and			
outer-coast beaches	forecast models to more	sites in known "hot	improved upon by		Tiffany Vance	
	precisely predict HAB	spots" for toxic	refining forecast		tiffany.vance@	
	threats, thus reducing	Pseudo-nitzchia	information		noaa.gov	
	unnecessary shellfish	blooms, and	through enhanced			
	closures and saving costs.	developing a short-	monitoring and			
	_	term forecast (3-day)	additional			
		that will leverage a	forecast models			
		forecast model	that will more			
		developed through	precisely predict			
		ECOHAB, and a	HAB threats, thus			
		longer-term forecast	reducing			
		(14-day) that would	unnecessary			

		predict bloom	shellfish closures			
		landfall trajectories.	and saving costs.			
Unregulated	The UCMR 4 was published	Year 1 of 5-year	Year 1 (2017):	USEPA	Melissa Simic	2021
Contaminant	in the Federal Register on	project	Implementation		simic.melissa@ep	-
Monitoring Rule	December 20,	1 5	preparations		a.gov	
	2016. UCMR 4		(notifications,			
	requires monitoring for 30		inventory, database			
	unregulated contaminants,		development,			
	including 10 cyanotoxins or		laboratory			
	cyanotoxins groups [total		approval process);			
	microcystins, MC-LA,-LF,-		Years 2-4 (2018-			
	LR,-LY,-RR,-YR, nodularin,		2020): Sampling,			
	anatoxin-a,		analytical analyses,			
	cylindrospermopsin],		and reporting of			
	between 2018 and 2020		results; Year 5			
	using analytical methods		(2021): Conclude			
	developed by EPA		data reporting and			
	and consensus organizations.		finalize data set			
	This monitoring provides a					
	basis for future					
	regulatory actions to protect					
	public health.			LIGERA		2020
Harmful algal bloom	Northern Kentucky	1 year of a 4-year	The Harmful	USEPA	James	2020
smart device	University and the ORD	project.	Algal Bloom		Lazorchak	
application: using	Cincinnati are collaborating		Classification		lazorchak.jim	
image analysis and	to develop a harmful algal		Application		@epa.gov	
machine learning	bloom detection algorithm		(HAB APP) has been field tested			
techniques for classification of	that estimates the presence of		and verified to			
harmful algal	cyanobacteria in freshwater systems by image analysis.		classify both			
blooms.	Green and blue-green algae		green and blue-			
biooms.	exhibit different Hue-		green algae. The			
	Saturation-Value color		application is			
	Saturation-value color		application is			

histograms in digital	being tested via
photographs. These	fixed camera
differences are exploited by	monitoring
machine learning techniques	stations and
to train a smart device	optimized at
(cellular phone, tablet, or	several locations
similar) to detect the	along the Ohio
presence of cyanobacteria in	River and in Lake
a small surface portion of a	Harsha, a 22,000-
freshwater system. A second	acre reservoir
app identify phytoplankton, zooplankton and	which supplies six million
macroinvertebrates using	gallons per day of
photographs taken by smart	drinking water to
devices from an attached	the Ohio county in which it lies
microscope.	
	and is a source of
	many recreational
	activities,
	including
	swimming,
	boating, and
	fishing. The
	presence will be
	verified by other
	detection
	instruments and
	<i>in vitro</i> by agency
	scientists and
	hysteresis
	techniques will be
	used to monitor
	the presence of

Western Lake Erie basin tributary	EPA is partnering with States in the Maumee river basin	EPA provided funding to establish 5	cyanobacteria on a periodic (<i>e.g.</i> daily, seasonally) basis at the monitoring stations. Further, the APP is being extended to classify harmful algae microscopically at the genus level using a convolutional neural network approach. Add 3 more sites to network and	USEPA	Santina Wortman	2020
monitoring and assessments	(Indiana, Michigan and Ohio) to establish a long term water quality monitoring network to track phosphorus loads and concentrations against the new Lake Erie phosphorus reduction targets. This effort will require new and continued investments in high frequency, storm event driven sampling.	new monitoring sites (automated water quality and flow) for 3 years EPA secured contractor support for a TMDL study that will assist Ohio, Michigan and Indiana in establishing appropriate nutrient targets and allocations for sub- watersheds to the	seek funding to extend timeframe of monitoring through 2020 and beyond Completion of TMDL study with Methodology for allocating Lake Erie phosphorus targets to subwatersheds of the Maumee River. Establish		wortman.santi na@epa.gov	

		Maumee.	subwatershed			
		Widdinee.	allocations and			
			begin reporting			
			progress annually			
			in 2020			
Great Lakes	EPA is coordinating CWA	The 2015 National	Analyze 2015	USEPA	Mari Nord	2020
nearshore	and GLRI programs and	Coastal Condition	data and provide		nord.mari@epa.	
monitoring	funding to support enhanced	Assessment was	report on Lake		gov	
enhancements	monitoring of Lake Erie	enhanced with 34	Erie assessment.			
	nearshore areas.	additional Lake Erie				
		sites to allow for	Ohio's Lake Erie			
		more refined	nearshore			
		assessments of the	program assesses			
		western, central and	water quality and			
		eastern basins.	habitat annually.			
		EPA provided CWA				
		and GLRI funds to				
		support Ohio's				
		development of a				
		new nearshore				
		monitoring program,				
		built on the NCCA –				
		the Lake Erie				
		Shoreline Monitoring				
		and Assessment				
		Program. In 2016				
		transects were added				
		to map the central				
		basin anoxic zone.				
Great Lakes	EPA is working with	EPA co-chaired a	EPA with	USEPA	Santina	2020
Cladophora	Environment Climate	technical workshop in	Environment		Wortman	
Research	Change Canada to conduct	January 2016 State of	Climate Change		wortman.santin	

	targeted monitoring and	the Science on	Canada will		a@epa.gov	
	modeling to better	Cladophora.	establish a			
	understand nuisance	I	binational			
	Cladophora growth and	EPA issued a Request	Cladophora			
	allow for future development	for Applications in	research plan			
	of phosphorus targets in	August 2017 for a	under GLWQA in			
	Lake Erie's eastern basin and	collaborative	2018.			
	the other Great Lakes.	Cladophora				
		monitoring and	EPA will support			
		modeling project.	a concerted			
			monitoring and			
			modeling effort at			
			several sentinel			
			sites in			
			2018/2019.			
			EPA and			
			Environment			
			Climate Change			
			Canada will			
			revisit the			
			potential for			
			setting			
			phosphorus			
			targets to limit			
			Cladophora			
			growth in 2020.	LIGED		2020 1
Great Lakes Long	USEPA's Great Lakes	Almost 100 fixed	-The	USEPA	Todd	2020 and
Term Monitoring	National Program Office has	station sites are	phytoplankton		Nettesheim	beyond
Programs	long term monitoring	sampled each spring	monitoring		Nettesheim.to	
	programs in place to measure	and summer to assess	component is		dd@epa.gov	
	and assess water quality,	the ecological health	being enhanced to			
	nutrient concentrations,	of the lakes, evaluate	collect additional			

HAB research and monitoring to meet the needs of state and local governments for improved understanding of bloom formation, detection, and prediction.	chlorophyll-a, and the abundance and diversity of zooplankton, phytoplankton and benthic communities. HAB research is being conducted in USGS Science Centers throughout the nation. Studies include both short- and long-term projects focused on quantifying blooms and associated toxins and taste-and-odor compounds. This effort is a collaboration with many state and local agencies in the states where the projects are being done. The program also helps develop field and	trends and identify emerging problems. Each Summer GLNPO also conducts dissolved oxygen surveys to measure and calculate the oxygen depletion rate of hypoxic waters in the central basin of Lake Erie. Numerous reports and journal articles have been published and are available in the USGS Publications Warehouse* using the search phrase "Harmful Algal Blooms" "cyanotoxins," and "algal toxins" (https://pubs.er.usgs.g ov/	data at nearshore sites and a pilot effort to collect year round samples with the use of automated samplers. Monitoring results are made available online in the Great Lakes Environmental Database (GLENDA). Future reports and journal articles will be made available through the USGS Publications Warehouse at https://pubs.er.usg s.gov/	USGS	Jennifer Graham jlgraham@usgs. gov	2015- 2020 and beyond
	are being done. The program also helps develop field and laboratory methods to monitor for HABs.	(https://pubs.er.usgs.g ov/				
Assess status and trends of the quality	USGS monitors fish-, aquatic macroinvertebrate- and	Data on taxon occurrence and	Progress and publications can	USGS	Jennifer Graham	2020 and beyond.

of the nation's	algae-community samples,	abundance can be	be found on the		jlgraham@usgs.	
streams, rivers, and	and conducts stream physical	obtained from the	Web at:		gov	
groundwater	habitat surveys to assess the	Web site	https://water.usgs.		<u></u>	
8	effects of multiple	https://aquatic.biodat	gov/nawqa/		James Kreft	
	stressors—including algal	a.usgs.gov/landing.ac	Data on aquatic		jkreft@usgs.go	
	toxins—on aquatic	tion	communities can		v v	
	organisms in streams in		be obtained from			
	several ecoregions.		the Water Quality			
			Portal at			
			https://www.wate			
			rqualitydata.us/			
Real-time	Water-quality sensors at real-	Measurements are	The numbers of	USGS	Jennifer	2020 and
observatories in	time measurement sites	made at over 2000	sites at which		Graham	beyond
marine and	(number) for dissolved	locations throughout	chlorophyll and		<u>jlgraham@usgs.</u>	
freshwaters	oxygen (651), temperature	the nation and	phycocyanin are		gov	
	(2,672), nitrate (138),	provided on a website	measured will			
	chlorophyll (64) and	at	change and likely		Brian Pellerin	
	phycocyanin monitor lake	https://waterwatch.us	increase over time		bpeller@usgs.g	
	and stream conditions and to	gs.gov/wqwatch/	in response to		OV	
	understand the development		local, state, and			
	of hypoxia, nuisance		Federal needs.			
	conditions, and harmful algal					
	blooms. This project is a					
	collaboration with several					
	States and local agencies.					
	Data from nitrate sensors					
	reduces scientific					
	uncertainties regarding					
	source, fate, and transport of					
	nutrients in the Mississippi					
	River Basin to the Gulf of					
	Mexico. The USGS is					

Quantify the fate and transport of HAB toxins in aquatic	evaluating how real-time nutrient data can be used to improve our understanding of nutrient transport from the headwaters to the mainstem and ultimately to the Gulf. USGS and NOAA collaborate on the release of the spring estimate of the size of the Gulf hypoxic zone. HAB research is being conducted in USGS Science Centers throughout the	Numerous reports and journal articles have been published	These projects typically range in duration from one	USGS	Jennifer Graham (jlgraham@usgs	Ongoing
environments. Multiple HAB toxins are monitored as well as taste-and- odor compounds.	Nation. Studies include both short- and long-term projects focused on quantifying blooms and associated toxins and taste-and-odor compounds. This effort is a collaboration with many state and local agencies in the States where the projects are being done. The program also helps develop field and laboratory methods to monitor for HABs in environmental samples.	and are available in the USGS Publications Warehouse using the search terms "harmful algal blooms" "cyanotoxins," and/or "algal toxins" (https://pubs.er.usgs.g ov/)	to five years. 2015-2020 and beyond. Future reports and journal articles will be made available through the USGS Publications Warehouse at https://pubs.er.usg s.gov/		.gov)	
Support Klamath Basin Monitoring Program (KBMP)	The Klamath Basin Monitoring Program (KBMP) brings together and makes publicly accessible cyanotoxin and other WQ	Participants completed the eighth year of coordinated water quality monitoring of a wide	Continue support of the stakeholder watershed monitoring, KBMP	USEPA	Sue Keydel Keydel.Susan@ epa.gov	Ongoing

			1			1
	monitoring data from	suite of constituents,	coordination, and			
	multiple watershed	including	EPA providing			
	stakeholders, including the	cyanotoxins and	ELISA-			
	Klamath tribal water quality	algae species, from	Microcystin			
	consortium (Karuk, Hoopa,	254 miles of river, six	analysis to inform			
	Quartz Valley and Yurok	reservoirs, and Upper	water quality			
	tribes) and the Klamath	Klamath Lake, from	conditions in the			
	Hydroelectric Settlement	Oregon to the	basin. Klamath			
	Agreement Interim Measure	Klamath River	Hydroelectric			
	15 Baseline and Public	Estuary in California.	Settlement			
	Health monitoring	EPA Region 9	Agreement			
	(conducted by Oregon DEQ,	provided ELISA-	Interim Measure			
	US Bureau of Reclamation,	microcystins analysis	15 monitoring is			
	PacifiCorp, and Karuk and	(up to 500	anticipated to			
	Yurok tribes)	samples/yr). The	continue annually			
		KBMP continues to	until FERC			
		host data reporting,	transfer of the			
		the Blue-Green algae	hydroelectric			
		Tracker mapping	dams for			
		cyanotoxin impacted	decommissioning			
		reaches, and semi-	(est. 2020).			
		annual stakeholder				
		meetings.				
Validation and	Promote the use of receptor	Conduct laboratory	Establish a	NOAA	John Ramsdell	Ongoing
Technology	binding assays (RBA) to user	based training for	network of user		john.ramsdell@	
Transfer of Toxin	groups in need of testing	members form the	laboratories in		noaa.gov	
Detection Methods	methods for algal toxins in a	Sitka tribe in Alaska	U.S. with FDA			
	variety of food products prior	and provide technical	and CDC and			
	to export or domestic	support for	internationally			
	consumption. These methods	establishing a testing	with IAEA,			
	have been validated (AOAC)	laboratory capable of	Regulatory			
	and accepted by governing	conducting regulatory	approval for Sitka			
	bodies (ISSC). Laboratory-	analysis for algal	Environmental			

	based training sessions for customers provide technical guidance. These are needed to establish methods, conduct	toxins in seafood. Host an IAEA supported workshop for product customers	Laboratory.			
	inter-laboratory validation exercises, and provide quality control on necessary reagents. This project's	from Southeast Asian countries on the validation, performance and				
	intent is to establish a network of user laboratories in U.S. with FDA and CDC	regulatory application of the RBA technology. Provide				
Phytoplankton	and internationally with IAEA. The purpose of this program	training in Africa and Arabian Gulf States. A freshwater PMN	Expand customer	NOAA	Steve Morton	Ongoing
Monitoring Network and Freshwater Phytoplankton Monitoring Network	is to train and support local volunteers at over 120 sites nationwide to monitor and report on HAP species. The	has been implemented in partnership with EPA to include monitoring	accessibility to HAB observations by enhancing data		steve.morton@ noaa.gov	
Monitoring Network	report on HAB species. The programs intent to expand to Lake Erie and Alaska regions where HABs are a particular problem. This project is a	groups in the areas around Lakes Erie, Huron, Michigan and Superior, and also at	serving capacity and visualization of the PMN database in			
	collaboration with FDA and CDC.	nineteen inland lakes across Utah, Montana, Colorado,	collaboration with the National Center for			
		South Dakota, North Dakota, New York, Ohio, Minnesota, Missouri, and	Environmental Information.			
Cooperative Gulf of	A multi-partner, sustainable	Kansas. Eight Monitoring	Sustainable	NOAA	Alan Lewitus	Ongoing
Mexico Hypoxia Monitoring Program	monitoring program that encompasses the northern	Work Groups established to	cooperative monitoring		alan.lewitus@n oaa.gov	

	Gulf of Mexico hypoxic	implement building	program.			
	zone, and advances	blocks for the				
	ecosystem management	CHAMP, including				
	objectives for mitigation of	Work Groups on				
	hypoxia, ocean acidification,	States of				
	and other ecosystem	Mississippi/Alabama,				
	stressors. This project is a	Louisiana, and Texas,				
	collaboration with the EPA	Ocean				
	and USGS.	Acidification/Oil and				
		Gas, Fisheries,				
		Hypoxia Task Force,				
		RESTORE Act, and				
		Autonomous				
		Vehicles.				
Synthesis,	The SOAR project provides	The implementation	Provide ongoing,	NOAA	Debbie Lee	Ongoing
Observations and	environmental intelligence	of the project	long-term		Deborah.lee@n	
Response (SOAR)	on coastal conditions to	includes the	monitoring to		oaa.gov	
	regional managers on Lakes	deployment and	regional			
	Michigan, Huron, and Erie.	support of on-water	managers in			
	This is a long-term	and remote sensing	Lakes Michigan,			
	monitoring program to	platforms where	Huron, and Erie,			
	ensure the consistency of	observations from	and provide			
	monitoring methods, develop	these systems are	relevant data to			
	rigorous QA/QC and	used to create	managers, as			
	synthesizing, and make	database products to	necessary			
	available monitoring data	evaluate restoration				
	and coupling monitoring	effectiveness, provide				
	programs with predictive	ecosystem				
	models for managers and	assessment, report on				
	public health officials.	restoration progress,				
		and aid in decision				
		support for regional				
		managers.				

Decision support tools to link phosphorus reductions to harmful algal blooms and source water protection	The intent of this effort is to sample weekly to obtain baseline information on bloom size, duration, and toxicity to help understand the interaction between rivers of HABs in Lake Erie and other HAB-prone regions of the Great Lakes including Saginaw Bay, Sandusky Bay, and Green Bay.	To-date, have continued to provide ongoing, weekly sampling during blooms, to obtain baseline information on bloom size, duration, and toxicity.	Provide ongoing, weekly samples of watersheds in the Great Lakes, including Saginaw Bay, Sandusky Bay, and Green Bay.	NOAA	Debbie Lee Deborah.lee@n oaa.gov	Ongoing
NOAA GLERL ReCON network	The purpose of the ReCON project is to develop a national network of low-cost coastal buoys capable of seabed to sea-surface observations. Each system collects meteorological data and provides sub-surface measurements of chemical, biological, and physical parameters. The system is designed to allow controlled access to multi-institutional users through surface buoys and sub-surface sensor guest ports located on an underwater hub. This project is a collaboration with USEPA and USGS.	Collect ongoing meteorological data and provide sub- surface measurements of chemical, biological, and physical parameters.	Develop a national network of low-cost coastal buoys capable of seabed to sea-surface observations	NOAA	Debbie Lee eborah.lee@noaa.g v	Ongoing
Conservation Effects Assessment Project	The Watershed Assessment Studies Component of CEAP	On-going watershed and field sampling and	On-going long- term assessments	USDA NRCS	Lisa Duriancik, lisa.duriancik@	Ongoing

(CEAP) Watershed	conducts small watershed	assessment analyses.	in 16 watersheds		wdc.usda.gov	
Assessment Studies	scale studies across the US to	Peer reviewed	across the nation		<u>,, aorabaa.50 r</u>	
	quantify water and soil	publications released.				
	resource outcomes of	puolications released.				
	conservation practices and					
	systems and to enhance					
	understanding of processes.					
	Interactions among practices					
	are investigated as well as					
	modeling enhancements,					
	watershed targeting					
	approaches, and					
	socioeconomic factors.					
	Practice standards are					
	developed or updated to					
	improve effectiveness and					
	address gaps. This work is					
	conducted in collaboration					
	with USDA ARS, USDA					
	Farm Service Agency,					
	NOAA, USGS, USEPA,					
	universities, and other					
	partners.					
National Aquatic	Series of EPA/State/Tribal	In 2007, 2012 and	The NARS is an	USEPA	Sarah Lehmann	Ongoing
Resource Surveys	studies designed to report on	again in 2017, the	ongoing program		lehmann.sarah	
(NARS)	the condition of lakes,	NLA included	with plans to		@epa.gov	
	rivers/streams, coastal waters	indicators associated	continue			
	and wetlands across the	with the risk of	sampling and			
	conterminous U.S. In	potential exposure to	assessment. For			
	addition to key biological,	cyanotoxins, including	the NRSA			
	chemical and physical	an analysis of	2018/19 plans call			
	indicators, cyanotoxins (e.g.,	microcystin levels and	for analyzing			
	microcystins) and other	two related indicators,	microcystins and			

	parameters are included for each of the surveys: the National Lakes Assessment (NLA), the National Rivers and Streams Assessment (NRSA), the National Coastal Condition	cyanobacteria and chlorophyll a. The 2012 report was published in December 2016. In 2017, cylindrospermopsin was added to the NLA	cylindrospermops in. Reports for information collected in the NRSA 2013/14 and NCCA 2015 are due out over			
	Assessment (NCCA), and the National Wetland Condition Assessment (NWCA).	as well. In 2013/14, microcystins were included in the NRSA. In 2015, the National Coastal Condition Assessment included	the next year. The NWCA 2016 report will follow.			
		microcystins along with a broader suite of algal toxins parameters. In 2011 and 2016, the National Wetland Condition Assessment included				
Kansas City Urban Lakes	Continue a long-term urban lake monitoring program, since 2010, in providing human health data on under- monitored lakes in public parks.	microcystins. Completed three sampling events for approximately 30 lakes. Completed sample analysis for nutrients and toxins.	Upload data into WQX – should be done before the end of this month.	USEPA	Michael Davis, EPA Region 7, davis.michael @epa.gov	Ongoing
USEPA Region 8 Analytical Support to State and Tribes	USEPA's Region 8's laboratory provides analytical support to states and tribes during bloom	Provided routine analytical support to ND, CO, UT, MT, and Turtle Mtn.	We expect to continue to offer analytical support in 2017.	USEPA	Tina Laidlaw Laidlaw.tina@epa.g ov	Ongoing

	· · · · · · · · · · · · · · · · · · ·	Dla and and t	1			
	events and facilitates routine	Bloom event				
	monitoring on lakes and	monitoring provided				
	reservoirs that regularly	for SD, UT, ND, and				
	experiences HAB events.	CO.				
	The Regional laboratory					
	provides routine analytical					
	support to ND, CO, UT, MT,					
	and Turtle Mountain, and					
	during blooms events to SD,					
	UT, ND, and CO.					
USEPA Region 8	USEPA's Region 8's	Buoy deployed from	Buoy deployed in	USEPA	Jeff McPherson	2017
Deployment of a	laboratory deployed a	April - October.	another lake in		mcpherson.jeffr	
Continuous	continuous monitoring buoy	Continuous data	2017.		ey@epa.gov	
Monitoring Buoy	on Canyon Ferry Reservoir,	recorded.				
	MT due to frequent blooms.					
USEPA Region 9	USEPA's Region 9	Provided analysis of	We expect to	USEPA	Sue Keydel	Ongoing
Analytical Support	laboratory is providing	approximately 160	continue to offer		Keydel.Susan	0 0
to State and Tribes	ELISA -microcystins	water samples for	ELISA-		@epa.gov	
	analysis to support states and	microcystins by	microcystins		1 0	
	tribes responding to HABs.	ELISA in 2017.	analytical support			
	The lab is finalizing method		in 2018.			
	validation for ELISA-	Progress on				
	Anatoxin-a analysis before	validation of ELISA-	Continue efforts			
	making analytical services	Anatoxin-a analysis,	on validation of			
	available.	by coordinating with	ELISA-Anatoxin-			
		CA agencies	a analysis, by			
		conducting anatoxin	coordinating with			
		analysis.	CA agencies			
			conducting			
			anatoxin analysis.			
			anatomi anarysis.			
			The planned			
			The planned		l	

			acquisition of a liquid chromatography/ mass spectroscopy/mas s spectroscopy to support PFAS and cyanotoxin analysis is on hold			
Cyanobacteria Monitoring Collaborative (CMC)	A multi-tiered interdisciplinary program that provides consistent data collection efforts on identifying and documenting HABs, monitoring activities, provides an educational component, and provides tools for insights to appropriate management of the waterbody.	Program is moving forward and expanding from regional to national, to international interests.	hold Updates on phone Apps that notify key public officials of HAB occurrence, further website development, data visualization development, ongoing hands on training and workshops.	USEPA	Hilary Snook snook.hilary@epa .gov	Ongoing
Clear Lake Task Force Monitoring Program	The Clear Lake Task Force, a group of tribes and local agencies, conduct monitoring of HAB for public health posting. USEPA Region 9 provides analytical support for microcystins analysis. Data collected by the Clear Lake Task Force also supports other ongoing studies (3.2 D and 3.1 T)	Provided analysis of approximately 140 water samples for microcystins by ELISA in 2017.	We expect to continue to offer analytical support in 2018.	USEPA	Sue Keydel Keydel.Susan @epa.gov	Ongoing

Louisiana Coastal Dissolved Oxygen Criteria Re- Evaluation	The state of Louisiana is in the process of re-evaluating current dissolved oxygen criteria for Louisiana coastal waters due to periodic hypoxic conditions extending from Gulf federal waters. This project is a collaboration with the Louisiana Department of Environmental Quality and the US EPA Region 6.	Data collection completed and state interim report identifying options.	Criteria development approach.	USEPA	Amanda Vincent, LDEQ amanda.vincent@1 <u>a.gov</u> Forrest John, EPA R6 john.forrest@epa. gov; Jacques Oliver Oliver.jacque@ep a.gov	Ongoing
Chesapeake Bay and San Francisco Bay Nutrients Monitoring	A monitoring network in 2004 at the Chesapeake Bay to document changes in nutrients throughout the watershed. This project is a collaboration with the Chesapeake Bay Program. A similar program is underway in 6 states contributing to the San Francisco watershed.	Progress and publications can be found on the Web at <u>https://chesapeake.usg</u> <u>s.gov/</u>	Progress and publications can be found on the Web at <u>https://chesapeake</u> .usgs.gov/	USGS	Ken Hyer <u>ken.hyer@usgs.</u> <u>gov</u> Michael Chotkowski nchotkowski@usg .gov	2019 for San Francisco Bay Ongoing for Chesapea ke Bay
Assess status and trends of the quality of the nation's streams, rivers, and groundwater	USGS conducts long-term monitoring of nutrients and other related water-quality characteristics in surface through the National Water Quality Network and groundwater-quality networks. The sources and quantities of nutrients	Annual statistics for concentrations, loads, and yields are reported on Web for 2015 and 2016 at <u>https://cida.usgs.gov/</u> <u>quality/rivers/home</u>	Annual updates to nutrient load estimates are available at <u>https://cida.usgs.g</u> <u>ov/quality/rivers/</u> <u>home</u>	USGS	Jennifer Graham jlgraham@usgs. gov	Ongoing

					Expected
Integrate new monito	ring technologies into emerging	g U.S. and global ocean	-observation systems	•	
	nationwide.				
	sites on major rivers				
	algae and algal toxins at 11				
	study to monitor for harmful				
	FY17, USGS began a pilot				
	nutrients and sediment. In				
	parameters including				
	critical water quality				
	used to evaluate trends in				
	numerous other agencies, are				
	with data aggregated from				
	yields. These data, along				
	concentrations, loads, and				
	including nutrient				
	available to the public,				
	the monitoring sites are				
	sites. Annual updates from				
	San Francisco Bay are monitored at 113 freshwater				
	as the Chesapeake Bay and				
	Mexico, and estuaries such				
	such as the Northern Gulf of				
	Great Lakes, coastal areas				
	delivered by streams to the				

Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expected Date of Completi
						on
Expanding	NOAA-GLERL is	Launched the ESP in	Will continue use	NOAA	Debbie Lee	2016
environmental	incorporating two integrated	Lake Erie in 2016,	of the ESP in		Deborah.lee@n	
intelligence assets in	projects that will increase the	and continued to use	Lake Erie, and to		oaa.gov	

western Lake Erie	capacity to monitor and forecast bloom events. The projects are the ESP to monitor microcystin toxins and the hyperspectral fly- overs of western Lake Erie to determine bloom biomass. This project supplements NOAA Great Lakes HAB monitoring program and aids in developing models that can forecast bloom density, vertical and horizontal movement, and toxicity. It also aids in synthesizing and making available monitoring data and coupling monitoring programs with predictive models and serving that	the technology in 2017. Performed hyperspectral fly- overs of the region, as well.	perform hyperspectral fly- overs of the region.			
	information to managers and public health officials.					
Glider Application to Gulf of Mexico Hypoxic Zone Monitoring; Pilot Study and Transition to Operations	Glider application to hypoxic zone monitoring in the Gulf of Mexico.	Proof of Concept complete; Pilot study ongoing.	Continued deployment of gliders for pilot study, completion of feasibility report for hypoxia monitoring applications	NOAA	David Hilmer david.hilmer@noa a.gov	2018
Implementing the <i>Karenia brevis</i> "tricorder" to Improve Red Tide	The study would build off an earlier ECOHAB project that developed a rapid, sensitive, and specific assay for the	Volunteer monitor training: Field trials held: Standard quantitation curves	Identify commercial partner to produce the detection	NOAA	John Wickham john.wickham @noaa.gov	2018

Monitoring and Management in the Gulf of Mexico	detection of <i>K. brevis</i> based on nucleic acid amplification technology, and adapted it for use with the QuadPyre, a handheld sensor. The current study demonstrates and transfer the handheld genetic sensors to monitoring end users, beginning with the FL FWRI and AL DPH.	developed; Eight Amplifire tricorders purchased: <i>K. brevis</i> rbcl gene expression quantified.	system. Integrate tricorder into GCOOS and PNW operations.			
Expanding Harmful Algal Bloom Mitigation in the Gulf of Mexico with Operational Support and Training for the Imaging FlowCytobot Network	Extends work (supported by ECOHAB and NCCOS/CCMA) to develop the IFCB to detect and quantify HAB cells rapidly (including in real-time) and continuously. This project will transition the IFCB to a commercial product (through McLane Research Laboratories), thus increase its availability for HAB early warning.	Progress in transition of IFCB to operations.	Operational IFCBs at sites along Texas coast.	NOAA	Marc Suddleson marc.suddleson@ noaa.gov	2018
Improved Gulf of Mexico Harmful Algal Bloom forecast	Joint NOAA / NASA project is aimed at increase resolution of forecast for harmful algal blooms along the Florida and Texas coasts to provide an "every beach, every day" forecast of the risks posed by toxic algal blooms. Develop citizen monitoring network to	Year 2 of 3-year project.	Develop citizen monitoring network to provide daily results that will allow near real- time notification of the public about prevalence of toxic aerosols	NOAA	Rick Stumpf Richard.stumpf@ noaa.gov	2019

	provide daily results that will allow near real-time notification of the public about prevalence toxic aerosols along beaches in Florida and Texas. This project is a collaboration with USGS, GCOOS, and Mote Marine Laboratory.		along beaches in Florida and Texas.			
Modeling reservoir algal community dynamics to link watershed to drinking water treatment and water recreation beneficial uses.	Provide a computational and modeling framework for linking watershed nutrient loadings to the degradation of reservoir water quality and resultant risks to human health and loss in beneficial uses.	Year 3 of 4-year project.	Database development.	USEPA	Christopher Nietch nietch.christopher @epa.gov	2019
Inland HAB Management	Comprehensive management of risks to multi-purpose freshwaters posed by cyanoHABs requires the integration of monitoring, analysis, and predictive modeling using a source water monitoring paradigm. Typically, sampling and quantification of cyanoHAB status are triggered by visual observations of water color or surface scums. At best, cyanobacterial cell counts or analysis of microcystin and	Data Collection 2015-17 HAB seasons Three presentations given: High Frequency monitoring of cyanoHABs and cyanotoxin production to characterize periods of greatest risk on an inland reservoir at the 8 th WHO Symposium; Cyanotoxin occurrence associated with cyanoHAB	Data Collection 2018 HAB season and Data Analysis and Reporting	USEPA	Joel Allen Allen.joel@epa.g ov	2019

	1		 1	
	other toxins has been	events on an inland		
	performed at set intervals	reservoir at SETAC		
	regardless of the water's	2016; and Lake		
	bloom status. This standard	Harsha: Three Years		
	sampling regime is	of HABs Monitoring		
	retrospective and in no way	at 9 th WHO		
	provides stakeholders the	Symposium.		
	ability to prepare for blooms			
	prior to their	Manuscript submitted		
	occurrence. Water quality	pending publication:		
	status technologies providing	Can qPCR and RT-		
	time-relevant, high-	qPCR be Used as		
	frequency data collection and	Monitoring Variations		
	analysis can be used to	of Microcystin		
	develop short-term empirical	Producers and Early		
	models for bloom state	Warning Their		
	prediction and trigger	Blooms?		
	changes in risk management			
	approaches.			
	Generally, it is known that			
	increased nutrients and			
	temperature are contributing			
	to increasing cyanoHAB			
	events. Combining			
	environmental data such as			
	nitrogen and phosphorous			
	levels, hydrodynamic data,			
	sunlight and temperature			
	data, and in-vivo			
	cyanobacterial densities			
	could provide short-term			
	predictive capabilities useful			
L	realed to capabilities abold	I		

An early warning system for <i>Pseudo- nitzschia</i> HABs on Pacific Northwest outer-coast beaches.	to recreational water users and drinking water treatment operators to reduce exposure and optimize treatment processes. The purpose is to restore and refine the Pacific Northwest HAB Bulletin by enhancing monitoring and additional forecast models to more precisely predict HAB threats, thus reducing unnecessary shellfish closures and saving costs.	The project expands current monitoring infrastructure off WA and OR by including sites in known "hot spots" for toxic <i>Pseudo-nitzchia</i> blooms, and developing a short- term forecast (3-day) that will leverage a forecast model developed through ECOHAB, and a longer-term forecast (14-day) that would predict bloom landfall trajectories.	The Pacific Northwest HAB Bulletin would be restored and improved upon by refining forecast information through enhanced monitoring and additional forecast models that will more precisely predict HAB threats, thus reducing unnecessary shellfish closures and saving costs.	NOAA	Marc Suddleson <u>marc.suddleson</u> <u>@noaa.gov</u> Tiffany Vance tiffany.vance@ noaa.gov	2020 2020 and
The Alliance for Coastal Technologies (ACT): National- scale efforts towards the evaluation of observing	ACT proposes to work in close collaboration with U.S. IOOS Program Office and Regional Associations (RAs), IOOS federal and non-federal partners, local and regional resource managers, academic			NOAA		2020 and beyond.

	1	1	1	1		
	researchers and the private					
	sector to improve operational					
	observation capabilities					
	through the quantification of					
	existing instrument					
	performance, and the					
	introduction of new					
	technologies, and enhanced					
	communications. ACT's					
	mission is to foster the					
	creation of new ideas, new					
	skills, new technologies, new					
	capabilities, and new					
	economic opportunities in					
	support of the sustained					
	national IOOS. The current					
	5-year grant focuses on					
	technologies to detect					
	harmful algae and their					
	toxins. ACT contributes to					
	ensuring the consistency of					
	monitoring methods,					
	developing rigorous QA/QC					
	and synthesizing and making					
	available monitoring data.					
	This project is a					
	collaboration with USEPA					
	and USGS.					
Third Generation	This system can be deployed	NOAA has deployed	Deploy new units	NOAA	Greg Doucette	2020 and
Environmental	in many different	an ESP off the Pacific	in California,		Greg.doucette@	beyond.
Sensor Platform	environments and has the	Northwest	Gulf of Maine,		noaa.gov	
	capacity to sample and		and Lake Erie.			
	analyze for HAB species and					

(NOAA West Coast Center for	Autonomous, Underwater Sensors for Harmful Algal Bloom Toxins	toxins in near real time. The data are transmitted to a central processing center where they are analyzed and data sent to relevant managers. This project is a collaboration with USEPA and NSF. The purpose of the project is the development of autonomous, in-water sensors able to detect individual HAB species and the toxins they produce. Given that bloom toxicity determines the potential for adverse effects on humans and wildlife, the overall aims of this project are to develop, validate, and deploy autonomous, underwater sensors for the detection of multiple HAB toxin classes on board the 2nd (2G) and 3rd (3G) generation ESP platforms. This project is a collaboration with USEPA and NSF.	We worked with the Monterey Bay Aquarium Research Institute to develop the ESP, an autonomous, underwater sensor that detects both harmful algae of the genus <i>Pseudo-</i> <i>nitzschia</i> and the potent neurotoxin they produce, domoic acid.	`	NOAA	Greg Doucette Greg.doucette@ noaa.gov	2020 and beyond.
--------------------------------	--	--	---	----------	------	---	---------------------

	Oceans and	
	Human Health).	
	XX7 · · · · · · · · · · · · · · · · · ·	
	We envision the	
	ESP as an integral	
	part of the US	
	Integrated Ocean	
	Observing	
	System (IOOS),	
	providing critical	
	information on	
	harmful algal	
	blooms to coastal	
	resource	
	managers. A	
	follow-on project	
	funded by the	
	National Science	
	Foundation will	
	transition the	
	ESP's HAB	
	species and toxin	
	detection	
	capabilities onto	
	an autonomous	
	underwater	
	vehicle (AUV).	
	Deployment of	
	the AUV-	
	mounted ESP will	
	provide an	
	unprecedented	
	ability to track	
1	utility to thick	

	1		1		1
		HABs in both			
		time and space			
		while measuring			
		changes in cell			
		abundance and			
		toxicity, along			
		with other factors			
		such as			
		temperature,			
		salinity, and			
		nutrients,			
		characteristics			
		that may			
		influence growth			
		and toxin			
		production in			
		these algae.			
Phytoplankton	The PMN is a community-	To continue to	NOAA	Steve Morton	Ongoing
Monitoring Network	based network of volunteers	develop and		steve.morton@	
and Freshwater	monitoring marine and	provide a national		noaa.gov	
Phytoplankton	freshwater phytoplankton	network that			
Monitoring Network	and HABs. The PMN	support the HAB			
	provides volunteer citizen-	forecast by			
	scientists with meaningful	identifying			
	opportunities for hands-on	landing of HABs,			
	science engagement. The	identify coastal			
	benefit of PMN is a national	landing of HABs			
	network that support the	not detected by			
	HAB forecast by identifying	the forecast, and			
	landing of HABs, identify	by providing			
	coastal landing of HABs not	national			
	detected by the forecast, and	monitoring of			
	by providing national	HABs beyond the			

Cyanobacteria Monitoring Collaborative (CMC)	monitoring of HABs beyond the regional HAB forecasts. This project is a collaboration with USEPA. The cyanobacteria monitoring component of this program is developing techniques that are beginning to demonstrate forecasting capabilities for bloom predictions.	Protocols are under development.	regional HAB forecasts Collect data.	USEPA	Hillary Snook ook.hilary@epa.ge ⊻	Ongoing
USGS and NPS partnership to work on high-priority water-quality issues in national parks, including harmful algal blooms.	The USGS and NPS Water- Quality Partnership program empowers USGS scientists and National Park Service (NPS) resource managers to work in partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks, including harmful algal blooms. There are ongoing HAB-related projects at several national parks including Isle Royale National Park, Sleeping Bear National Lakeshore, Pictured Rocks National Lakeshore, and Voyageurs National Park.	Progress and publications can be found on the USGS/National Park Service Water- Quality Partnership Program website https://water.usgs.gov /nps_partnership/	Progress and publications can be found on the USGS/National Park Service Water-Quality Partnership Program website https://water.usgs. gov/nps_partners hip/	USGS, NPS	Mark Nilles manilles@usgs. gov	Ongoing
Develop and standardize HAB	Publishing standard methods and approaches for field	A USGS Techniques and Methods (T&M)	The final report will be made	USGS	Jennifer Graham	2018

monitoring methods	sensors that measure algal pigments, like chlorophyll and phycocyanin, and dissolved organic matter, and correlating these measures to harmful algal blooms and algal toxins.	report describing the use of water quality sensors for measurement of algal pigments and fluorescent dissolved organic matter has been peer reviewed and is planned for publication in FY18. The T&M report will contain quality assurance and quality control specifications for continuous measurement and calibration of sensors.	available through the USGS Publications Warehouse at <u>https://pubs.er.usg</u> <u>s.gov/</u>		(jlgraham@usgs .gov)	
Develop a rapid-respo Action	onse strategy for assessing HAE Goal/Purpose	<i>exposure.</i> Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expected Date of Completi on
Public health communication tools and resources during HAB events with potential health consequences.	Collaborate with state, federal, or other partners on public health communications tools and resources related to HAB exposures (people/animals).	Launch of a CDC HAB-associated illnesses website, including reference materials for the general public, and health care providers. Addition of a HABs section to the Drinking Water	Evaluate additional opportunities to engage and support partners on HABs and public health (e.g., community of practice)	CDC	Lorraine Backer <u>lfb9@cdc.gov</u> Virginia Roberts <u>evl1@cdc.gov</u>	Ongoing.

Investigating illness and outbreaks related to HABs	Develop a module for detecting and investigating HAB-related illnesses and outbreaks within an overall waterborne disease outbreak investigation toolkit.	Advisory Communications Toolkit (DWACT). Use of the Community Assessment for Public Health Emergency Response (CASPER) to assess community knowledge about the 2014 <i>Microcystis</i> bloom in Lake Erie. Ongoing collaboration with other agencies on communication materials. Drafts completed.	N/A (completed)	CDC	Lorraine Backer lfb9@cdc.gov	2018
Fund method development through Prevention, Control, and Mitigation of HABs Program	Develop, working with the seafood industry, new, rapid assessment methods to detect HAB toxins in seafood.			NOAA		2020

Develop, improve, and	d validate HAB and hypoxia m	odels and remote sensing	g			
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expected Date of Completi on
Transitioning to Operations NOAA- supported Statistical Hypoxia Models and Forecasts in the Gulf of Mexico and Chesapeake Bay	Transition to operations a multiple statistical model framework for hypoxia forecasting and assessment in the Gulf of Mexico and Chesapeake Bay, based on quantitative relationships between nutrient loading and hypoxic zone size. Seasonal forecasts produced annually. This project is a collaboration with USGS.	NOAA demonstrated capability of running models; transition plan ongoing.	NOAA NCCOS will run scenario forecasts in 2018.	NOAA	Alan Lewitus alan.lewitus@n oaa.gov	2017
CEAP Special Studies: CEAP- Croplands in the Western Lake Erie Basin	CEAP-Croplands supported an assessment of agricultural conservation practice adoption across the Western Lake Erie Basin in 2003-06, as part of the CEAP-1 national survey, and in 2012, as part of a Special Study of WLEB. The two surveys allowed assessment of changes in practice adoption and impacts over time. Two reports were developed from	Report released October 2017	Area is being resurveyed as part of CEAP 2.0 and will be re- assessed in future years	USDA NRCS	Lee Norfleet <u>lee.norfleet@w</u> <u>dc.usda.gov</u>	2017

Appendix 3. Actions to Improve Predictive Capabilities for HABs and Hypoxia

	4 1 1 1 1		Γ	1		
	the work, including one					
	released in April 2016 that					
	discusses edge of field					
	impacts and one that will be					
	released in August 2017 that					
	discusses watershed scale					
	impacts on instream					
	dynamics and load delivery					
	to Lake Erie. These reports					
	provide a science-based					
	understanding of					
	conservation practice					
	impacts, successes, and					
	outstanding needs across					
	Western Lake Erie Basin, as					
	related to water quality, soil					
	health, and farm					
	sustainability. Thus, these					
	reports may be used to					
	inform conservation planning					
	and field and watershed					
	scales.					
Seasonal	Produce seasonal red tide	Provides short term	Continue short	NOAA	Quay Dortch	2018
Forecasting of	forecasts based on upwelling	3-D water movement	terms forecasts		quay.dortch@noa	
Karenia brevis	driven nutrient availability	forecasts for the	and provide 2018		a.gov	
Blooms in the	patterns, complementing the	weekly Florida Red	forecast. Begin		_	
Eastern Gulf of	short-term forecasts from the	Tide Report and on a	transition to			
Mexico.	NOAA HAB-OFS. The	web site.	operations if			
	seasonal forecast would	http://ocgweb.marine.	warranted.			
	produce predictions on the	usf.edu/hab_tracking/				
	location and timing of	HAB_trajectories.ht				
	blooms, allowing managers	ml. Provided 2016				
	(e.g. FWC, FL Dept.	seasonal forecast.				

	Agriculture and Consumer Services) to prepare when and where to focus sampling efforts.					
Inter annual variability of PSP toxicity in eastern Maine: testing the leaky gyre hypothesis and improving regional forecasts and management.	Improve Gulf of Maine HAB Forecast Model for the eastern Gulf of Maine by determining source of HAB cells that initiate bloom.	In 2017 deployed 4 moored sensors with HAB cell & toxin sensors in high energy Bay of Fundy and downstream into Gulf of Maine.	Repeat moorings in 2018. Improve models.	NOAA	Quay Dortch quay.dortch@noaa gov	2019
Improved Gulf of Mexico Harmful Algal Bloom Forecast	Joint NOAA / NASA project is aimed at increased resolution of the operational forecast for harmful algal blooms along the Florida and Texas coasts to provide an "every beach, every day" forecast of the risks posed by toxic algal blooms. This project is a collaboration with USGS, GCOOS, and Mote Marine Laboratory.	Funding through NOAA, NASA, CDC and others has allowed for the development of necessary tools for detecting HABs, monitoring their development, transport, toxicity and determining their effect on local wildlife, humans and socioeconomics. We have now reached a point in several regions where the understanding of these blooms is mature enough to put	The ultimate goal is to provide an "every beach, every day" forecast for HABs in the Gulf of Mexico, and elsewhere around the country.	NOAA/ NASA	Rick Stumpf richard.stumpf @noaa.gov	2019

HABs. We continue to refine the forecasting tools based on research results and the development of more useful detection and monitoring tools.
TransitionProvide an operational realTransition PlanTransitionNOAABecky Baltes2019
Chesapeake Baytime, short term forecast of hypoxic conditions in thecompleted.forecast to operations.Becky.Baltes@Mathematical Sectorhypoxic conditions in theoperations.noaa.gov
Chesapeake Bay to enable
several stakeholder groups to
make informed decisions
(e.g. recreational fishermen,
commercial fishermen, water
quality managers, resources managers). This project is a
collaboration with USEPA

	and USGS.					
Ecosystem Response and Recovery	The goal of this research is to improve understanding and prediction of aquatic (freshwater, estuarine, marine) ecosystem response and recovery to changing nutrient loads and other stressors. Ecosystem properties related and impacted by nutrients include biotic community structure, e.g., algal composition.	Year 2 of 5-year project.	Data collection Narragansett Bay, Mobile Bay, and Puget Sound. Ecosystem Models for Response and recovery and Nutrient- enhanced coastal acidification and hypoxia (NECAH) will be applied to these systems as well as to the Northern Gulf of Mexico and Lake Michigan.	USEPA	James Hagy hagy.jim@epa.go v	2019
Monitoring and multimedia modeling approaches for verifying nutrient reductions.	The goal of this research is to improve our scientific understanding of the systems of best management practices that most effectively address nutrient issues and the breadth of implementation that is needed before positive results can be achieved and measured at different watershed scales and for different endpoints, e.g.,	Year 2 of 5-year project.	Creation of simulated time series of agricultural N and P losses to the Mississippi River Basin (MRB), creation of additional time series of losses under different BMPs, provision of all-time series to	USEPA	Heather Golden golden.heather @epa.gov	2019

concentrations, loads, and eutrophication response.for response and recover and nutrient-enhanced coastal acidification and hypoxia (SSWR 4.02B).for response and recover and nutrient-enhanced coastal acidification and hypoxia (SSWR 4.02B).seaseBlake Schaeffer gepa_gov2019Cyanobacteria Assessment Network (CyAN)CyAN is a multi-agency project among NASA, modA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwarer systems. This research local patners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized algorithm ercommendational coera ColourCONUS MERIS CI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, Dotal Mapper, expansion of data aquatic and human health.2019Developed a method for examiningOcean Colour Coordinating Group. Expansion of data assessment, transferable to different spatial areas.USEPA Expansion of data acialability to CONUS state DEPs/DEQs.Blake Schaeffer Schaeffer.blake @epa_gov2019Developed a method for examiningCordinating Group. Expansion of data assessment, transferable to different spatial areas.Developed a method for examiningEveloped a method for examiningUSEPA Eveloped a method for examiningUSEPA Eveloped a method for examiningEveloped a method for examiningUSEPA Eveloped a method for examiningUSEPA Eveloped a method for examiningUSEPA Eveloped a method for examiningUS					1	1	1
eutrophication response.recover and nutrient-enhanced coastal acidification and hypoxia (SSWR AO2B).leasele		target nutrient		Ecosystem models			
CyanobacteriaCyAN is a multi-agency project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized algorithm metrics have been developed, presented Developed a method for examiningUSEPA CONUS MERIS USEPABlake Schaeffer Schaeffer.blake @epa.gov2019 Schaeffer.blake @epa.govCyanobacteria Assessment warning indicator system satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized action and presented Developed a method for examining temporal changes in cransferable to different spatial areas.Developed a method for examiningStandardized colum convoltating forup. Developed a method for examiningUSEPA CONUS state DEv/DEQs.Blake Schaeffer Schaeffer.blake @epa.gov2019 Schaeffer.blake @epa.govDeveloped a method different spatial areas.Developed a method for examiningExpansion of data availability to CONUS state Developed a method different spatial areas.Schaeffer Local a method for examining2019 Schaeffer.blake Wartor Local and human health.				1			
Cyanobacteria Assessment Network (CyAN)CyAN is a multi-agency project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized algorithm ecommendations to the International Ocean ColourUSEPA CONUS MERIS CI data delivery Data Mapper, Report on Environment, DW Maps teams.Blake Schaeffer Schaeffer. blake @epa.gov2019Cyanobacteria Assessment, transferable to different spatial areas.Standardized algorithm ocition and hypoxiaCONUS MERIS CI data delivery Data Mapper, Report on Exvironment, DW Maps teams.USEPA Schaeffer. blake @epa.govBlake Schaeffer Schaeffer. blake @epa.gov0Developed a method for examining temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examiningUSEPA temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examiningUSEPA temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.USEPA temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examining <td></td> <td>eutrophication response.</td> <td></td> <td>recover and</td> <td></td> <td></td> <td></td>		eutrophication response.		recover and			
Cyanobacteria Assessment Network (CyAN)CyAN is a multi-agency project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current systems. This research guantized aquatic and human health.Standardized algorithmCI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams. Ocean Colur Systems. This research systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized algorithm intercomparison metrics have been developed, presented the International Developed a method for examiningBlake Schaeffer Schaeffer. Schaeffer. Data Mapper, Environment, DW Maps teams. OCean Colur CONUS state DEPs/DEQs.Blake Schaeffer gen.2019 Schaeffer. Schaeffer. Schaeffer. Schaeffer. Schaeffer. Schaeffer. Schaeffer. Schaeffer. Developed a method for examiningData Mapper, Report on Expansion of data availability to CONUS state DEPs/DEQs.Blake Schaeffer. S				nutrient-enhanced			
Cyanobacteria Assessment Network (CyAN)CyAN is a multi-agency project among NASA, project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized algorithmCONUS MERIS CI data delivery thercomparison to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environnent, DW Maps teams.Blake Schaeffer. blake @epa.gov2019Coordinating Group. Developed a method for examiningDW Maps teams. vanobacteria harmful algal bloom spatial extent for state level ages sessment, transferable to different spatial areas.Developed a method for examiningExpansion of data availability to DEveloped a method for examiningExpansion of data availability to DEVERSE.Image and the set of the spatial areas.Developed a method for examiningDeveloped a method for examiningDeveloped a method for examiningImage and the set of the spatial areas.Image and the set of the spatial areas.				coastal			
Cyanobacteria AssessmentCyAN is a multi-agency project among NASA, Network (CyAN)Standardized algorithmCONUS MERIS CI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, and incorporated into satellite data to detect alga blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized ametrics have been cean Colour Coordinating Group. Developed a method different spatial areas.USEPABlake Schaeffer. blake @epa.gov2019Developed, presented blooms in U.S. freshwater systems. This research aquatic and human health.Standardized acean Colour Coordinating Group. Developed a method different spatial areas.Convus state DEPs/DEQs.Standardized availability to CONUS stateImage and the state in the import of charges in cyanobacteria harmful alga bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examiningExpansion of data availability to CONUS stateImage and the state in the import of the state in the import on the state in the import of the state in th				acidification and			
Cyanobacteria AssessmentCyAN is a multi-agency project among NASA, Network (CyAN)Standardized algorithmCONUS MERIS CI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, and incorporated into satellite data to detect alga blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Standardized ametrics have been cean Colour Coordinating Group. Developed a method different spatial areas.USEPABlake Schaeffer. blake @epa.gov2019Developed, presented blooms in U.S. freshwater systems. This research aquatic and human health.Standardized acean Colour Coordinating Group. Developed a method different spatial areas.Convus state DEPs/DEQs.Standardized availability to CONUS stateImage and the state in the import of charges in cyanobacteria harmful alga bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examiningExpansion of data availability to CONUS stateImage and the state in the import of the state in the import on the state in the import of the state in th				hypoxia (SSWR			
Assessment Network (CyAN)project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.algorithm intercomparison metrics have been developed, presented and incorporated into Developed a method for examiningCI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams.Schaeffer.blake @epa.govOcean Colour Coordinating Group. Iocal partners in their monitoring efforts to assess water quality to protect aquatic and human health.algorithm intercomparison motion spatial extent for state level assessment, transferable to different spatial areas.CI data delivery to EnviroAtlas, CFERST, Estuary DW Maps teams.Developed a method for examiningfor examining temporal changes in cyanobacteria harmful alga bloom spatial extent for state level assessment, transferable to different spatial areas.CI data delivery to EnviroAtlas, CFERST, Estuary DW Maps teams.Developed a method for examiningDeveloped a method for examiningImage: Schaeffer.blake (Sch				• •			
Assessment Network (CyAN)project among NASA, NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.algorithm intercomparison metrics have been developed, presented and incorporated into Developed a method for examiningCI data delivery to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams.Schaeffer.blake @epa.govOcean Colour supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.algorithm intercomparison motions patial extent for state level assessment, transferable to different spatial areas.Col data delivery to EnviroAtlas, CERST, Estuary Developed a method for examiningDeveloped a method for examiningDeveloped a method for examiningExpansion of data availability to CONUS stateDeveloped a method for examiningDeveloped a method for examiningExpansion of data availability to CONUS state	Cyanobacteria	CyAN is a multi-agency	Standardized	CONUS MERIS	USEPA	Blake Schaeffer	2019
Network (CyAN)NOAA, USGS, and the USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research local partners in their monitoring efforts to assess water quality to protect aquatic and human health.intercomparison metrics have been developed, presented coean Colourto EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams. Ocean Colour@epa.govCordinating Group. Doveloped a method for examining tagla bloom spatial extent for state level assessment, transferable to different spatial areas.to EnviroAtlas, CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams. OCean ColourDeveloped a method for examining tagla bloom spatial extent for state level assessment, transferable to different spatial areas.to EnviroAtlas, Cerenstrian DW Maps teams.@epa.govDeveloped a method for examiningDeveloped a method different spatial areas.Developed a method for examiningDeveloped a method for examining	-		algorithm	CI data delivery		Schaeffer.blake	
USEPA to develop an early warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research usupports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.metrics have been developed, presented and incorporated into recommendations to the International Developed a method algal bloom spatial extent for state level assessment, transferable to different spatial areas.CFERST, Estuary Data Mapper, Report on Environment, DW Maps teams. OW Maps teams. OCONUS stateDeveloped a method for examiningExpansion of data availability to CONUS stateImage: Convertional and the provide a method algal bloom spatial extent for state level assessment, transferable to different spatial areas.Developed a method for examining	Network (CvAN)	1 0 0	-			@epa.gov	
warning indicator system using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research uointoring efforts to assess water quality to protect aquatic and human health.developed, presented and incorporated into recommendations to the International Ocean Colour Coordinating Group. Developed a method for examiningData Mapper, Report on Environment, DW Maps teams. OCMUS state DEVS/DEQs.0Coordinating Group. Developed a method for examiningExpansion of data availability to DEVS/DEQs.0Developed a method for examiningDeveloped a method for examining				· · · · ·		10	
using historical and current satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.		1 1		· · · · ·			
satellite data to detect algal blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.				11 /			
blooms in U.S. freshwater systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health. Developed a method for examining extent for state level assessment, transferable to different spatial areas. Developed a method for examining			1	1			
systems. This research supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health. Developed a method for examining extent for state level assessment, transferable to different spatial areas. Developed a method for examining		6		,			
Supports federal, state, and local partners in their monitoring efforts to assess water quality to protect aquatic and human health.Coordinating Group. Developed a method for examining temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.Expansion of data availability to CONUS state DEPs/DEQs.Developed a method for examiningDeveloped a method for examiningExpansion of data availability to CONUS state DEPs/DEQs.Developed a method for examiningDeveloped a method for examiningExpansion of data availability to CONUS state DEPs/DEQs.				D W Maps teams.			
local partners in their monitoring efforts to assess water quality to protect aquatic and human health. Developed a method for examining cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas. Developed a method for examining				Expansion of data			
monitoring efforts to assess water quality to protect aquatic and human health.for examining temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.CONUS state DEPs/DEQs.Developed a method for examiningDeveloped a method for examiningImage: Conuction of the temporal changes in temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.Image: Conuction of temporal changes in temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.		11	0 1	-			
water quality to protect aquatic and human health.temporal changes in cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas.DEPs/DEQs.Developed a method for examiningDeveloped a method for examiningImage: Comparison of the spatial areas and the spatial area and the sp		-	±	5			
aquatic and human health. cyanobacteria harmful algal bloom spatial extent for state level assessment, transferable to different spatial areas. Developed a method for examining Developed a method			0				
algal bloom spatial extent for state level assessment, transferable to different spatial areas. Developed a method for examining			1 0	DEPS/DEQs.			
extent for state level assessment, transferable to different spatial areas. Developed a method for examining		aquatic and human health.					
assessment, transferable to different spatial areas. Developed a method for examining			0 1				
transferable to different spatial areas. Developed a method for examining							
different spatial areas. Developed a method for examining			<i>,</i>				
Developed a method for examining							
for examining			different spatial areas.				
for examining							
cyanobacteria harmful							
			cyanobacteria harmful				
algal bloom frequency			algal bloom frequency				
of occurrence for							

recreational and
resolvable surface
drinking water
systems.
Production and
delivery of MERIS CI
composites for the full
mission at 300 m for
the full continental
United States
(CONUS). These
MERIS CI data are
available for project
collaborators
evaluation.
Production and
delivery of Sentinel-3
OLCI 2017+ forward
stream and data is
being made available
to project collaborators
and science team
members. A metadata
file and release notes
have been included
with the data
distribution.
Three webinar training
sessions for state and
federal collaborators
on SeaDAS software,

IOOS COMT: Inter- comparison of	Skill assessment of 3D time variable hypoxia models and	RS tools, and Android mobile application. CyAN mobile application is in production and available for states to beta test with new 2017 satellite data. Support to Utah DEQ for Utah Lake and USACE for Lake Okeechobee. Nutrient reduction targets for N and P	Transition forecast to	NOAA	Becky Baltes becky.baltes@	2020
Hypoxia Models for the Northern Gulf of Mexico and Seasonal Forecasts and Nutrient Load Scenarios.	transition to operations. Hindcast simulation of hypoxic zone dynamics presented to Mississippi River/Gulf of Mexico Hypoxia Task Force in 2016. This project is a collaboration with USEPA and NRL.	presented to Hypoxia Task Force to guide hypoxia mitigation strategies.	operations.		noaa.gov	
Integration of Runoff Risk Forecasts into Hypoxia Forecast Models	The Runoff Risk Forecast (RRF) is a decision support tool providing guidance to farmers and producers on when to avoid applying fertilizers and manure to their fields in the next ten days. Following the guidance will reduce the risk that freshly applied nutrients will be	A partnership with EPA Great Lakes Restoration Initiative has resulted in multiple grants to expand and enhance the RRF tools in additional Great Lakes states in the next year.	RFP to assess coastal ecosystem benefits of watershed nutrient reductions due to RRF use.	NOAA	Alan Lewitus alan.lewitus@ noaa.gov	2020

User-driven tools to predict and assess effects of reduced nutrients and hypoxia on living resources in the Gulf of Mexico	transported into nearby water bodies. The aim is to quantify the benefits of the RRF to nutrient load reductions and incorporate these results into hypoxia scenario forecast models. This project is a collaboration with USEPA and USGS. Predict effects of reduced size of the hypoxic zone and reduced nutrient loading on fish and shellfish growth rate potential, biomass, and catch using simulation models, and develop management tools that can be used to weigh costs and benefits of alternative management strategies, and improve resource assessments.	Initial integration of datasets into ROMS and GRP models has begun, workshop conducted in Feb. 2016 to bring together advisory panel, which includes fisheries managers to solicit input.	Develop management tools in collaboration with fisheries managers that can be readily applied to test alternative management strategies to reduce hypoxic volume, and investigate subsequent effects on fish growth, population	NOAA	Dave Hilmer david.hilmer@ noaa.gov	2020 and beyond.
			dynamics (e.g. abundance and biomass), and fisheries catches.			
Synthesis and integrated modeling of long-term data sets to support	Integrate existing datasets using probabilistic modeling approaches to more fully evaluate the spatiotemporal	Hypoxia cruise data collected and processed, space-time geostatisitcal model	Integrate existing datasets using probabilistic, data-centric	NOAA	Dave Hilmer david.hilmer@ noaa.gov	2020 and beyond.

fisheries and	dynamics of hypoxia and to	is being developed.	modeling			
hypoxia	understand and predict the	Information on	approaches to			
management in the	ecosystem impacts of	bottom dissolved	more fully			
Northern Gulf of	hypoxia, particularly the	oxygen and species	evaluate the			
Mexico	consequences for regional	diversity from	spatiotemporal			
	fisheries and for ecological	summer and fall	dynamics of			
	indicators of upper-trophic-	SEAMAP cruises	hypoxia and to			
	level fish community, which	was compiled and	understand and			
	are currently being used or	made available as	forecast effects on			
	developed to monitor the	two key indicators	fisheries and			
	state of the Gulf ecosystem.	used to monitor the	ecosystem			
	5	status of the Gulf	impacts.			
		Ecosystem.	1			
Using linked models	Link the Dynamic Land	Development of a	Link well-	NOAA	Dave Hilmer	2020 and
to predict the	Ecosystem Model (DLEM)	strategy for linking the	established		david.hilmer@	beyond.
impacts of hypoxia	for the watershed, Delft3D	watershed model	models quantify		noaa.gov	-
on Gulf Coast	model for diversions, Finite	DLEM, the diversions	fish and shrimp			
fisheries under	Volume Community Ocean	model Delft3D, and	population			
scenarios of	Model (FVCOM)-WASP	the hydrodynamics-	responses to			
watershed and river	model for hydrodynamics	water quality model	various			
management	and water quality, and fish	FVCOM-WASP.	combinations of			
	and shrimp population	Initial implementation	nutrient loadings			
	models to provide a	of the linking of the	and diversion			
	quantitative basis for	three models for three	operations, and			
	evaluating the effectiveness	selected years (2010-	present the results			
	and efficiency of watershed	2012), DLEM model	so they directly			
	management action designed	development	inform			
	to reduce nutrient loadings	underway, Deft3D	management.			
	and hypoxia.	model development				
		underway, FVCOM-				
		WASP model				
		development				
		underway, progress on				

An early warning system for <i>Pseudo- nitzschia</i> HABs on Pacific Northwest outer-coast beaches.	The purpose is to restore and refine the Pacific Northwest HAB Bulletin by enhancing monitoring and additional forecast models to more precisely predict HAB threats, thus reducing unnecessary shellfish closures and saving costs.	coding of the individual-based population model into FVCOM using FVCOM's particle tracking bookkeeping, and, synergistic modeling efforts begun. The project expands current monitoring infrastructure off WA and OR by including sites in known "hot spots" for toxic <i>Pseudo-nitzchia</i> blooms, and developing a short- term forecast (3-day) that will leverage a forecast model developed through ECOHAB, and a longer-term forecast (14-day) that would predict bloom landfall trajectories.	The Pacific Northwest HAB Bulletin would be restored and improved upon by refining forecast information through enhanced monitoring and additional forecast models that will more precisely predict HAB threats, thus reducing unnecessary shellfish closures and saving costs.	NOAA	Marc Suddleson <u>marc.suddleson</u> <u>@noaa.gov</u> Tiffany Vance tiffany.vance@ noaa.gov	2020
Operational Lake Erie Hypoxia Forecasting for Public Water	Provide public water systems with advance warning of lake circulation events that are likely to cause changes in	1) A stakeholder workshop was conducted to gather feedback from end	1) Develop, validate, and test a coupled hydrodynamic-	NOAA	Felix Martinez felix.martinez@ noaa.gov	2020 and beyond.

Contains Desision						
Systems Decision	raw water quality by	users on forecast type,	ecological model			
Support	developing an operational	format, and timing	to forecast the			
	hypoxia forecast model for	most useful for water	nature and			
	Lake Erie, coupled to an	plant operations.	movement of			
	existing real-time, fine-scale	2) New physical	hypoxic water in			
	hydrodynamic model. This	dissolved oxygen	Lake Erie. 2)			
	project is a collaboration	model was been	Develop a			
	with the USEPA and USGS,	developed, tested, and	transition plan for			
	which provided water quality	used for the 2017	the project's			
	data critical to the	hypoxia season. Model	models.			
	development of the forecast	successfully predicted				
	models.	coastal upwelling				
		effects with potential				
		to impact drinking				
		water plants. 3) A test				
		webpage with				
		nowcasts/forecasts of				
		the dissolved oxygen				
		model was developed				
		and is being assessed				
		for public release.				
Watershed modeling	Models such as the USGS'	In 2016, the USGS	The USGS is	USGS	Jennifer	2020 and
of sources and	SPAtially Referenced	and USDA released an	working with the		Graham	beyond.
contributions,	Regressions on Watershed	assessment of the	IJC, Environment		<u>jlgraham@usgs.</u>	
transport, and	(SPARROW) provide	benefits of	Canada, and the		gov	
delivery of nitrogen,	consistent approaches to	conservation practices	provinces of			
phosphorus, and	estimating nutrient sources in	at	Ontario and			
carbon from coastal	coastal areas. Long-term data	https://www.usgs.gov/	Saskatchewan to			
rivers downstream to	on nutrient enrichment has	news/new-study-	complete a			
receiving waters such	been used in SPARROW	quantifies-benefits-	binational			
as the Gulf of	models, which examine	agricultural-	SPARROW			
Mexico, Chesapeake	nutrient sources for freshwater	conservation-upper-	model. Model			
Bay, and the Great	streams, lakes, and coastal	mississippi-river-basin	output will identify			

Lakes. Models help areas, and in new			1 1 1			1
L			the relative			
to test scenarios for detecting trends in			importance of			
decision making on loads. SPARROW			nutrient sources			
best management identify major so			and loads			
practices. nutrients and sedi			geographically in			
coastal areas, the	,		the Great Lakes			
and inland lakes i			watershed. The			
US. Models are a	vailable for		results are planned			
the conterminous	United		for publication in			
States in major w	atersheds		FY18.			
including the Mis	sissippi					
River, Chesapeak	e Bay, and		Regional			
binational Great I	Lakes. This		SPARROW			
project is a collab	oration with		models that			
USDA ARS.			collectively			
			represent major			
			areas of nutrient			
			enrichment and			
			loading			
			nationwide, are			
			being updated to			
			2012 conditions.			
			These models are			
			planned for			
			release prior to			
			2020.			
Develop new Studies are being	conducted Se	Several real-time	Reports and	USGS	Jennifer	Ongoing
statistical models to to identify types of		nodels estimating the	journal articles		Graham	
predict algal toxins forming algae and		probability of	are available		jlgraham@usgs.	
and blooms using compounds, and c	-	yanotoxin and taste-	through the		gov	
real-time sensor data real-time and earl		ind-odor occurrence	USGS		C	
from lake and river systems in high-		re available through	Publications			
monitoring stations water bodies used		he National Real-	Warehouse* by			

Decision-support tools to link phosphorus reductions to HABs and source water protection.	recreation and drinking- water throughout the Nation. Many studies employ new and developing sensor technology to detect algal pigments and develop surrogate relations to estimate the concentration or probability of cyanotoxin occurrence. To provide data supporting the Lake Erie HAB Tracker, which has been used in Lake Erie since 2014 and slated for transition to operations in FY18.	Time Water-Quality website at https://nrtwq.usgs.go v/ For example, a study of the primary drinking water supply for Wichita, Kansas combined long-term discrete and continuous water- quality data to develop models that estimate the probability of microcystin occurrence in near real time. The Lake Erie HABs Bulletin went fully operational in July 2017.	searching on Harmful Algal Blooms "cyanotoxins," and "algal toxins" at https://pubs.er.usg s.gov/ Weekly sampling data have been used to develop the now- operational Lake Erie HAB Tracker.	NOAA	Debbie Lee Deborah.lee@n oaa.gov	Ongoing
NGOMEX and CHRP	HABHRCA-authorized competitive programs to advance the development and application of scenario- based ecosystem models to quantitatively evaluate hypoxia causes and impacts,		Advance the development and application of scenario-based ecosystem models to quantitatively evaluate hypoxia	NOAA	Alan Lewitus alan.lewitus@n oaa.gov	Ongoing

Lake Erie Seasonal HAB Forecasts	using an integrative modeling approach, and develop outreach tools to communicate advanced understanding to coastal managers and other stakeholders. The Lake Erie seasonal forecast for the cyanobacterial bloom depends on an ensemble of models, and also includes an early season projection, extending up to two months prior to the final forecast.	The Lake Erie HAB Forecast became fully operational in July 2017.	causes and impacts, using an integrative modeling approach, and develop outreach tools to communicate advanced understanding to coastal managers and other stakeholders. When funding is available, NCCOS will release an RFP for these programs. Improvements to the NWS River Forecast Center models for river discharge are being incorporated and evaluated for the early season projections, and the models for the forecast are being reevaluated.	NOAA	Rick Stump Richard.stumpf @noaa.gov	Ongoing
Integration of	The Runoff Risk Forecast	A partnership with	NOAA will	NOAA	Alan Lewitus	2020

Runoff Risk	(RRF) is a decision support	EPA Great Lakes	release an RFP to		alan.lewitus@n	
Forecasts into	tool providing guidance to	Restoration Initiative	assess coastal		oaa.gov	
hypoxia forecast	farmers and producers on	has resulted in	ecosystem		U	
models	when to avoid applying	multiple grants to	benefits of			
	fertilizers and manure to	expand and enhance	watershed			
	their fields in the next ten	the RRF tools in	nutrient			
	days. Following the guidance	additional Great	reductions due to			
	will reduce the risk that	Lakes states in the	RRF use			
	freshly applied nutrients will	next year.				
	be transported into nearby					
	water bodies. The aim is to					
	quantify the benefits of the					
	RRF to nutrient load					
	reductions and incorporate					
	these results into hypoxia					
	scenario forecast models.					
	This project is a					
	collaboration with USEPA					
	and USGS.					
Lake Erie HAB	The Lake Erie HAB Forecast	The Lake Erie HABs	NOAA	NOAA	Rick Stumpf	Ongoing
Forecast System	System includes several	Bulletin went fully	anticipates to		richard.stumpf@	
	formats of products to	operational in July	improve the		noaa.gov	
	support public and local	2017.	resolution of its			
	government needs. It		remote sensing			
	incorporates satellite data,		activities, and			
	field data, and numerical		therefore, the			
	models to generate timely		accuracy of its			
	information on the location		forecasts.			
	and likely intensity of the					
	blooms. A new satellite was					
	launched in 2016, which will					
	provide greater resolution of					
	the blooms. This needs to be					

	incorporated in the monitoring and forecasts. Also, 3D modeling of the blooms and evaluation of toxicity patterns will improve the accuracy and value of the forecasts.					
	Adding OLCI satellite data					
	to the bulletin, begin					
	evaluations of output of 3-D					
	modeling.					
CEAP-2: The	This project aims to quantify	Survey completed	On-going	USDA	Lee Norfleet	Ongoing
second Conservation	trends in conservation		assessment	NRCS	lee.norfleet@w	
Effects Assessment	practice adoption on				dc.usda.gov	
Project (CEAP)	cultivated cropland across					
National Assessment	the US and provide the first					
(2015-2016), on	assessment of conservation					
Cultivated Cropland	practice adoption on					
and pastureland.	pastureland across the US. A					
	Modeling component allows					
	assessment of the impacts of					
	current (2015-16), past $(2002, 06)$ and alternative					
	(2003-06), and alternative scenario agricultural					
	conservation practices on					
	edge of field losses,					
	deposition/legacy dynamics,					
	and load deliveries to					
	watershed outlets. Allows					
	evaluation of conservation					
	efforts impacts on					
	agroecological indicators,					
	including yields, soil health,					

		[· · · · · · · · · · · · · · · · · · ·	1
	water quantity and quality,					
	and impacts on biodiversity,					
	which in turn enables					
	development of improved					
	practice standards and					
	comprehensive conservation					
	planning. Project CEAP					
	contributes to development					
	of conservation planning					
	tools to improve					
	agroecological benefits					
	across the US, including a					
	reduction of agriculture's					
	impact on water quality and					
	an improvement of the					
	nation's soil health. This					
	work is conducted in					
	collaboration with USDA					
	ARS, USDA NASS and					
	universities.					
Cyanobacteria	The cyanobacteria monitoring	A Region 1 Quality	A workgroup	USEPA	Hillary Snook	Ongoing
Monitoring	component of this program is	Assurance Project	analysis day will		snook.hilary@epa	
Collaborative	developing techniques that are	Plan has been	take place in		<u>.gov</u>	
(CMC)	beginning to demonstrate	developed and	December			
	forecasting capabilities for	approved for this	analyzing all			
	bloom predictions. This	program. Regional	samples collected			
	project will help ensure	monitoring entities	as part of the			
	consistency of monitoring	have implemented the	cyanobacteria			
	methods, implement rigorous	approach and 2017	monitoring			
	benchmarks of quality	samples will be	collaborative.			
	assurance and quality control,	analyzed jointly in	Cyanobacteria			
	and making available	November. Program	identifications			
	monitoring data. This project	cyanobacteria	and bloom			

	is a collaboration with the University of New Hampshire.	identifications and bloom notification submittals have also seen an increase in 2017.	notifications are ongoing, and a core workgroup meeting will be held in November.			
Salish Sea Ecosystem Model	The Salish Sea Ecosystem Model, supported by the USEPA and the USACE is used to determine hypoxia relationship to nutrient loading throughout the Salish Sea, at moderately high resolution. It comprises a physical-biological coupled model with FVCOM as the physical model and CE- QUAL-ICM as the biogeochemical model. Currently ocean acidification module is being added and resolution enhanced. This project is a collaboration with PNNL and WA Ecology. Other ongoing research includes linking the Salish Sea Model with the USEPA's ecohydrological model [Visualizing Ecosystem Land Management Assessments	Model has been calibrated for one year and is being used to run scenarios.	Finalize and calibrate ocean acidification module and improve resolution.	USEPA	Ben Cope cope.ben@epa. gov	Ongoing

	(VELMA] to simulate effects of land use and climate scenarios on riverine transport of terrestrial nutrients and contaminants to the Puget Sound estuarine- ocean system.					
Modeling reservoir algal community dynamics to link watershed to drinking water treatment and water recreation beneficial uses.	Provide a computational and modeling framework for linking watershed nutrient loadings to the degradation of reservoir water quality and resultant risks to human health and loss in beneficial uses.	Year 3 of 4-year project.	Database development.	USEPA	Christopher Nietch nietch.christopher @epa.gov	2019

Develop enhanced surveillance for human and animal exposure, illnesses, disease, and deaths resulting from HAB toxins.

Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agency	Point of Contact	Expected Date of Completi on
Use public health	Publish a summary of data	OHHABS launched	Additional data	CDC	Virginia	2020
surveillance data to	collected in the One Health	in 2016, with	collection, data		Roberts	
characterize and	Harmful Algal Bloom	additional	review		evl1@cdc.gov	
inform	System (OHHABS).	components added in	process, and			
understanding of		2017 to support data	surveillance			
HAB-associated		collection and	report to be			
illnesses		review.	completed			
Ciguatera fish	To identify ciguatoxin levels	All samples have	Analyze and	FDA	Sara Handy	2018
poisoning: assessing	in food fish from endemic	been collected and	publish data.		Sara.Handy@fd	
toxin levels in	waters	analyzed.			a.hhs.gov	
implicated food fish						
species from						

endemic US waters						
Cyanobacteria Monitoring Collaborative (CMC)	This project will help identify short- and long-term effects of HABs and hypoxia on communities and the impact of HABs and hypoxia. Also, will provide information to explore the causes of HABs and the level of awareness of associated human-health risks by providing clear and easy-to- use reporting tools and communication mechanisms to pet owners, veterinarians, wildlife and fisheries personnel, medical and public-health officials, and others. This project is a collaboration with the USGS.	A phone App has been developed for citizen/public reporting of blooms to key state water quality contacts. Two public crowdsourcing databases have been established for reporting and documenting potential bloom occurrences and cyanobacteria image identifications. Program trainings in the region and national webinars have introduced and or trained an additional 400-500 individuals on the program in 2017. Quick start guides have also been produced for the bloomWatch and cyanoScope levels of the program.	with a simplified image based cyanobacteria key for program users is in development. Data visualization for the cyanomonitoring component is in progress, and website improvements and additional training tools are presently being worked on.	USEPA	Hillary Snook nook.hilary@epa.ş ov	Ongoing
Evaluate biological methods to provide evidence of ambient exposures to cyanotoxins and to	To support the development of methods to quantify and characterize absorbed doses of cyanotoxins in biological samples which will enhance	Year 3 of 4-year Project	Data collection underway	USEPA	Elizabeth Hilborn hilborn.e@epa.go v	2019

samples for	the interpretation of					
cyanotoxin	associated health effects. The					
concentrations,	goal is to collect human and					
characterize	animal biological samples					
associated effects	after they have experienced					
among humans and	ambient exposures to					
animals	harmful cyanobacteria. This					
	project is a collaboration					
	with the California Dpt. of					
	Health and the California					
	Dpt. of Fish and Wildlife and					
	the Lake County Director of					
	Health, the Clear Lake					
	Cyanobacteria Task Force					
	and community.					
Investigate	USGS has ongoing research	A USGS study in	Additional reports	USGS	Jennifer	2020 and
ecological and food	characterizing ecological and	Upper Klamath Lake	and journal		Graham	beyond
web impacts from	food web impacts of	demonstrated a link	articles will be		jlgraham@usgs.	Ongoing
HAB toxins.	cyanotoxins. This research is	between microcystin	published and		gov	
	conducted in collaboration	and reduced young-of	made available			
	with other federal, state, and	the year recruitment	through the			
	local land and water	of federally	USGS			
	management agencies.	endangered suckers.	Publications			
		Progress and	Warehouse [*]			
		publications can be	https://pubs.er.usg			
		found on the Web at:	<u>s.gov/</u>			
		https://or.water.usgs.				
		gov/klamath/				
Investigate	USGS has ongoing research	A USGS study in	Additional reports	USGS	Jennifer	Ongoing
ecological and food	characterizing ecological and	Upper Klamath Lake	and journal		Graham	
web impacts from	food web impacts of	demonstrated a link	articles will be		jlgraham@usgs.	
HAB toxins.	cyanotoxins. This research is	between microcystin	published and		gov	
	conducted in collaboration	and reduced young-of	made available			

	with other federal, state, and local land and water management agencies.	the year recruitment of federally endangered suckers.	through the USGS Publications			
		Progress and publications can be found online	Warehouse https://pubs.er.usg s.gov/			
		https://or.water.usgs. gov/klamath/				
Understanding the exposure patterns and potential for health risks from cyanotoxins and other toxin exposures to humans and other organisms.	Provide the science needed to understand how to economically and effectively minimize the risk, if any, to the health of humans and other organisms exposed to cyanotoxins (and other toxins, through inhalation, dermal, ingestion, and other exposure routes. This project is part of a larger effort of the USGS Environmental Health Mission Area to provide information that will help resource managers to understand how to effectively minimize potential risks to the health of humans and other organisms exposed to cyanotoxins and other biogenic toxins through recreational, drinking, and other exposure routes.	Publications can be found on the Web at: https://toxics.usgs.go v/highlights/	Additional reports and journal articles will be published and made available on the Web at: https://toxics.usgs .gov/highlights/ and through the USGS Publications Warehouse *by searching on "Harmful Algal Blooms" "cyanotoxins," and "algal toxins" at https://pubs.er.usg s.gov/	USGS	Mike Focazio mfocazio@usgs .gov	Ongoing

Appendix 4. Actions to Improve Stakeholder Engagement and Socioeconomic Understanding

	tion and coordination among he as an indicator of potential hum					nal
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Drinking Water	Drinking water cyanotoxin	Published November	N/A (complete)	USEP	Katherine	2016
Cyanotoxin Risk	management risk	2016		A	Foreman	
Communication	communication toolbox that is				Foreman.Kather	
Toolbox	aimed to be a ready-to-use,	ground-water-and-			ine@epa.gov	
	"one-stop shop" with	<u>drinking-</u>				
	worksheets, press release	water/cyanotoxin-				
	templates, social media posts,	tools-public-water-				
	and other quick-reference	systems				
	guides for utilities and states					
	to use in communicating with					
	the public before, during and					
	after a cyanotoxin					
	contamination event.					
Cyanotoxin	The template is intended to	Published November	N/A (complete)	USEP	Hannah	2016
Management Plan	assist states, tribes and water	2016		A	Holsinger	
Template and	utilities in developing their	https://www.epa.gov/			Holsinger.Han	
Example Plans	own cyanotoxin management	ground-water-and-			nah@epa.gov	
	plans specific for their	drinking-				
	locations. The template	water/cyanotoxin-				
	includes potential steps for	tools-public-water-				
	monitoring, treatment and	systems				
	communication activities. To					
	support systems as they					
	develop their plans, EPA					
	worked with five utilities to					

Tools for Addressing the Risks of Cyanotoxins in Drinking Water Video	develop system-specific cyanotoxin management plans to provide examples for utilities to reference as they develop system-specific plans for their utility. The video provides a brief overview of Tools for Addressing the Risks of Cyanotoxins in Drinking Water recently developed by USEPA to support drinking water systems in their cyanotoxin risk management activities.	Developed the script for the video.	Finalizing of video	USEP A	Katherine Foreman Foreman.Kather ine@epa.gov	2017
Develop website materials and document for lake managers or public health officials responsible for overseeing recreational water bodies.	Provide information to lake managers or health officials interested in monitoring for—and responding to— cyanobacterial blooms in the water bodies they manage.	Website materials and monitoring document were completed in July 2017 although future updates are likely (<u>https://www.e</u> pa.gov/nutrient- policy- data/monitoring-and- responding- cyanobacteria-and- cyanotoxins- recreational-waters), (<u>https://www.epa.gov</u> /sites/production/files /2017- 07/documents/08_jul	Minor updates to reflect criteria magnitude, duration and frequency values are expected when recreational criteria for microcystins and cylindrospermopsin are made final.	USEP A	Shari Barash Barash.Shari@ epa.gov	2018

		y_3_monitoring_doc				
		ument_508c_7.5.17.p				
		df)				
Human Health	The purpose of the Human	Draft	Currently revising	USEP	John Ravenscroft	2018
Recreational	Health Recreational Ambient	recommendations	draft document in	Α	ravenscroft.john	
Ambient Water	Water Quality Criteria and/or	posted for public	response to public		@epa.gov	
Quality Criteria	Swimming Advisories is to	comment in Dec	comments received.			
and/or Swimming	protect the public from	2016. Public	Next steps include			
Advisories for	incidental ingestion of	comment period	internal Agency			
Microcystins and	microcystin and	closed in March	review of revised			
Cylindrospermopsin	cylindrospermopsin during	2017.	document.			
	primary contact recreation.					
California	Develop resources to	California co-	Currently revising	USEP	Sue Keydel	2020
CyanoHAB	respond to and manage	sponsored: the April	draft guidelines for	Α	Keydel.Susan@ep	
Response and	HABs statewide including:	2017 EPA OW &	HAB response. Will		a.gov	
Management	guidelines for posting HAB-	Region 9	continue to engage		_	
resources	impacted recreational waters	HABs/Cyanotoxin	and support partners			
development via the	based on toxin levels;	Workshop, a May	on HABs and public			
California	monitoring; developing	2017 Domoic Acid	health through			
Monitoring Council,	SOPs and safety guidelines;	Workshop, and	efforts of CCHAB			
California	maintaining list of labs doing	quarterly CCHAB	and Monitoring			
Cyanobacteria and	HAB analyses; working with	full-day	Council partners.			
HAB (CCHAB)	CyAN team on satellite data	meetings; responded	_			
Network and State	evaluation including HAB	to reports of HABs in				
Water Resources	status and trends in	171 waterbodies				
Control Board	observable waters; a web	resulting in posting of				
	portal with a real-time map	124 waters;				
	of known impacted waters,	conducted a "Pre-				
	and links to resources; and	Labor Day				
	training opportunities. The	Assessment of 43				
	Monitoring Council and	highly visited				
	CCHAB Network bring	waterbodies with a				
	together multiple state	history of HABs to				

	agencies, as well as federal,	assure timely and				
	local and tribal stakeholders,	accurate posting for				
	NGO's and water body	the holiday weekend;				
	mangers. (Partially	developed and				
	supported with CWA 106	published a				
	funds).	"Veterinarian				
	Tunus).	Reference" fact				
		sheet; continued				
		work with CyAN				
		team on satellite data				
		evaluation, satellite				
		web tool, and				
		Android app review;				
		continued to update				
		and improve the				
		Freshwater HAB				
		event Map and				
		tracking.				
Public health	Collaborate with state,	Launch of a CDC	Evaluate additional	CDC	Lorraine Backer	Ongoing
communication	federal, or other partners on	HAB-associated	opportunities to	CDC	lfb9@cdc.gov	ongoing
tools and resources	public health	illnesses website,	engage and support		<u>nb) @ 000.gov</u>	
during HAB events	communications tools and	including reference	partners on HABs		Virginia	
with potential health	resources related to HAB	materials for the	and public health		Roberts	
consequences.	exposures (people/animals).	general public, and	(e.g., community of		evl1@cdc.gov	
consequences.	exposures (people/ annuas).	health care providers.	practice)		<u>eviii@edde.gov</u>	
		Addition of a HABs	practice)			
		section to the				
		Drinking Water				
		Advisory				
		Communications				
		Toolkit (DWACT).				
		Use of the				
		Community				
·		Community				

		Assessment for Public Health Emergency Response (CASPER) to assess community knowledge about the 2014 <i>Microcystis</i> bloom in Lake Erie. Ongoing collaboration with other agencies on communication materials.				
Upper Mississippi River Basin Association HABs workgroup	USEPA Region 7 joined the Upper Mississippi River Basin Association Harmful Algal Bloom group to enhance knowledge and to create partnerships with the states of the Upper Mississippi River, as well as federal partners and others, in addressing harmful algal blooms (HABs) on the Upper Mississippi River (UMR). The working group developed a HABs response support manual. This project is a collaboration with USEPA Region 5, Upper Mississippi River states, USGS and USACE.	The working group developed a HABs response support manual: http://www.umrba.or g/wq/umr-hab- response-resource- manual-8-2016.pdf.	Continue correspondence between states, UMBRA, and federal agencies. Future meetings of the workgroup and updates on monitoring capacities.	USEP A	Dave Hokanson dhokanson@um rba.org	Ongoing
Compilation of	This effort intent to share	Completed HABs	Continue roundtable	USEP	Amy Shields	Ongoing

HAB Programs and Capacities for Iowa, Kansas, Missouri, Nebraska, USGS, USACE and USEPA Region 7	monitoring and laboratory capacities with Iowa, Kansas, Missouri and Nebraska. This project is a collaboration with Kansas, Nebraska, Iowa, and Missouri, USGS, and USACE.	compilation of HAB capacities for state partners and federal agencies	discussions during sampling seasons as needed; EPA R7 HABs workshop was attended by all four R7 states. R7 will be participating and presenting in Kansas Harmful Algal Bloom Stakeholder meeting in winter 2018.		shields.amy@epa. gov	
Cyanobacteria Monitoring Collaborative (CMC)	The purpose is to increase the verification and documentation of likely HAB occurrences.	A phone App has been developed and put into use as of August 2016.	Regularly scheduled updates of the App will incorporate additional state agencies upon request.	USEP A	Hillary Snook <u>snook.hilary@epa</u> <u>.gov</u>	Ongoing
Identify susceptible p	opulations at higher risk for HA	AB-associated adverse h	ealth effects.	-		
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Effects of exposure to algal/cyanobacterial toxins in mammalian models	The objective of this project is to increase our understanding of the results of exposures to common algal and cyanobacterial toxins in mammals using laboratory mouse bioassays.	Year 3 of 4-year project.	Laboratory work currently underway	USEP A	Neil Chernoff chernoff.neil@epa .gov	2019

Expand stakeholder e	ngagement.					
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Demonstration Farm Network Blanchard	The Blanchard River Demonstration Farm	The three farms in the Western Lake Erie	Researchers studying different	USD A	Doug Deardorff doug.deardorff	2020
River Demonstration Farm Network	Network (Ohio) is a \$1 million, five-year project and the first of its kind in Ohio. Three demonstration farms showcase innovative and standard agricultural practices that help reduce and prevent nutrient runoff. The Blanchard River Demonstration Farm network includes several crucial components: •Edge of field monitoring •Economic analysis •Participation and attendance •Project replication This project is carried out in collaboration with Ohio Farm Bureau.	Basin are testing various conservation methods to help reduce nutrient runoff and better protect water quality. The results of these new and traditional methods are being shared with farmers to help them determine what conservation practices might work best on their farms.	conservation practices at the Blanchard River Demonstration Farms are narrowing their focus to four practices that appear to help reduce nutrient and sediment loss. 1. Adhering to Tri- State Fertility Guide recommendations 2. Improving soil health 3. Subsurface placement of nutrients 4. Disconnecting hydrologic pathways	NRC S	@oh.usda.gov	
			More information is			

Demonstration Farm Network Lower Fox Demonstration Farm Network	Goals include: • Establish 2-4 demonstration farms within the Lower Fox Watershed to test new and standard conservation systems in reducing phosphorus and sediment.	Achievements include USGS edge of field monitoring; Numerous "Field Days on the Fly"; and, Demonstration of Low Disturbance Manure application	available at: https://ofbf.org/2 017/04/17/research ers-focusing-four- conservation- strategies-demo- farms/ The Network is working to provide better information on the effectiveness of conservation systems used to improve water quality, while also providing	USD A NRC S	Tom Krapf <u>tom.krapf@wi.</u> <u>usda.gov</u>	2021
	 Establish an efficient mechanism to share this technology and information with farmers, agribusiness, conservation agencies and the public. 	equipment.	educational technology transfer opportunities through public field days.			
	 Create opportunities for others to test their research, technical and program ideas at the demonstration farms. Share information and lessons learned from the Lower Fox Watershed throughout the Great Lakes 					
National HAB	basin.	Hold several	Conduct the 2017	Multi-	Ex-Officio	Onacina
Committee	Established to provide a collective voice for the	conference calls with	US HAB	agency	Members	Ongoing

academic, management, and	members and ex-	Symposium.	(USEP	Lesley V.
stakeholder communities, this	officio members.		A,	D'Anglada
committee's mission is to	Initiated planning the		CDC,	Danglada.Lesl
facilitate coordination and	2017 US HAB		FDA,	ey@epa.gov
communication of HAB	Symposium.		USGS,	
activities at a national level.			NSF,	Lorraine C.
The committee was formed			NOAA,	Backer
after the need for better			NIH)	lfb9@cdc.gov
coordination within the HAB				
research and management				Stacey
communities—and for				Degrasse
enhanced communication with				Stacey.Degrasse
federal agencies. Co-chaired				@fda.hhs.gov
by researchers from an				
academic institution and a				Quay Dortch
non-profit marine research				quay.dortch@
institution. Federal agencies				noaa.gov
serve as ex-officio members.				
				Keith Loftin
				kloftin@usgs.
				gov
				Donald Rice
				drice@nsf.gov
				Marc
				Suddleson
				Marc.Suddles
				on@noaa.gov
				Fred Tyson
				tyson2@niehs.
				nih.gov

]
Inland HABs	Group of public-health	Four National	Three to four	Multi	Lesley D'Anglada	Ongoing
Discussion Group	officials from states,	Webinars Conducted:	webinars plan per	-	Danglada.Lesley	
_	Counties and Tribes,	March 2016 on	year	agenc	@epa.gov	
	academia, and Federal	HABs in the Great		у		
	agencies to discuss issues	Lakes; October 2016		(USE	Lorrie Backer,	
	related to research,	on Freshwater HABs		PA,	CDC	
	monitoring, human and	Response Efforts;		CDC,	lbacker@cdc.gov	
	ecological health risk	February 2017 on		USG		
	assessment, education, and	Toxin Monitoring,		S)	Keith Loftin,	
	outreach. This group is led	and May 2017 on			USGS	
	by USEPA, CDC and USGS.	Success Stories of			kloftin@usgs.gov	
		HABs Prevention,				
		Control and				
		management				
		Techniques				
Regional	Share information and build	Seven regional	Conduct two	USEP	Lesley	2018
HABs/Cyanotoxin	relationships among federal,	workshops	workshops/meeting	A	D'Anglada	
Workshops and	state, and tribal CWA and	completed: Region 8	s in 2018 in Region		DAnglada.Lesley	
Meetings	SDWA programs by making	in 2015; Region 5	4 and Region 6.		@epa.gov	
	connections and identifying	and Region 10 in				
	shared HAB-related goals,	2016; and Region 1,	Publish a		Hannah Holsinger	
	needs, and barriers. This	Region 2, Region 3,	Compendium of all		holsinger.hannah	
	project is a collaboration with	Region 7 and Region	Regional HABs		@epa.gov	
	USEPA Regions. USEPA	9 in 2017.	workshops.			
	Regions also host annual					
	nutrient meetings with the					
	states that cover hypoxia					
	issues and potentially HABs.			LIGES		
Cyanobacteria	Immediate notification to	A phone App has	Additional state	USEP	Hillary Snook	Ongoing
Monitoring	key agency officials upon the	been developed for	agencies to be	A	snook.hilary@epa	
Collaborative	onsite submittal of an	this purpose and is	added upon the next		<u>.gov</u>	

(CMC)	occurring bloom.	now available to anyone that would like to use it. There are presently several state agencies signed up to receive notifications, and many waiting to be added to the App upon the next update.	App update.			
USEPA Region 8 Webinar Series	USEPA Region 8 hosted webinar series on HABs issues to share HABs information with states DEQ and health departments, and tribal environmental programs on HABs related issues.	Six webinars held in 2016.	Continue hosting webinars in 2017.	USEP A	Tina Laidlaw Laidlaw.tina@epa.g ov	Ongoing
Freshwater HABs Newsletter	Monthly newsletter with a main focus primarily on freshwater HABs and provides information on upcoming events, conferences, and webinars, useful resources, beach closures and health advisories, current news and recently published journal articles	Twenty-one Newsletters published since January 2016. Twenty-four newsletters published from January 2014 to December 2015.	Monthly publication.	USEP A	Lesley D'Anglada <u>DAnglada.Lesley</u> @epa.gov	Ongoing

Evaluate socioeconor	nic impacts of HABs and hypox	cia, and the costs of mitig	gation			
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Effects of hypoxia on harvest dynamics and economics of the shrimp fishery in the northwestern Gulf of Mexico	The objectives of this proposal were to: (1) evaluate the effects of hypoxia on the spatial and temporal dynamics of shrimping effort and catch and the associated consequences for quantitative assessment models currently used to inform management of the fishery, (2) determine the spatial extent and nature of hypoxia effects on the spatial behavior and fishing activities of individual shrimp vessels, (3) quantify the economics consequences of hypoxia on the fishery using discrete choice models of fishing behavior, (4) identify the causal impact of hypoxia the economics of the fishery using quasi- experimental methods, and (5) develop a bioeconomic model of the shrimp fishery	The study found that the Gulf Hypoxic zone had a significant economic impact on the shrimp market – this provided the first quantitative evidence linking Gulf hypoxia to economic impacts. The study found that the hypoxic zone drives up the price of large shrimp relative to small shrimp, creating an economic impact that directly affects consumers, fishermen and seafood markets.	N/A - completed	NOA A	Dave Kidwell david.kidwell@ noaa.gov	2016

Possible Funding Sources for Managing Cyanobacterial Harmful Algal Blooms and Cyanotoxins in Drinking Water Fact Sheet	that can be used to assess the economic consequences of alternative nutrient and fishery management policies. This document provides an explanation of possible funding sources that can be used to manage cyanobacterial harmful algal blooms and cyanotoxins. These sources include the Safe Drinking Water Act and Clean Water Act revolving funds and other possible funding sources to support drinking water systems in managing risks to drinking water from harmful algal blooms and cyanotoxins.	Published January 2017 https://www.epa.gov/ ground-water-and- drinking- water/cyanotoxin- tools-public-water- systems	N/A - Complete	USEP A	Hannah Holsinger Holsinger.Hann ah@epa.gov	2017
HABs Socioeconomic Workshop	To meet with Federal agencies and economic experts to discuss research methods and needs related to social science and HABs.	Steering Committee formed, workshop plans ongoing.	Workshop convened and outputs inform development of PCMHAB competitive funding announcement.	NOA A	Marc Suddleson marc.suddleson@1 oaagov	2018
Estimating the Economic Benefits of Mitigating and Avoiding Harmful Algal Blooms	Economic value of detecting bloom events using remote sensing as part of the CyAN project.	Draft manuscript titled "Exploring the use of satellite remote sensing to monitor chlorophyll- a for nuisance and harmful algal blooms." for publication.	Perform economic analysis (pending funding).	USEP A	Michael Papenfus Papenfus.Micha el@epa.gov	2019

Continue and expand	relevant research, management	t, and policy collaboration	ons.			
Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Contaminant Candidate List Four	The CCL is a list of drinking water contaminants that are known or anticipated to occur in public water systems and are not currently subject to EPA drinking water regulations. Several cyanotoxins were included.	Published November 2016	N/A (complete)	USEP A	Meredith Russell <u>Russell.Meredit</u> <u>h@epa.gov</u>	2016
Source Water Protection	Mapping program for source water protection and planning. Currently synthesizing and making available monitoring data.	Year 2 of project; reboot expected 2017	New Geoplatform version 2017	USEP A	Bo Williams williams.james @epa.gov	2018
Integration of Alternative Methods of Analysis into the Neurotoxic Shellfish Poisoning Monitoring and Management Framework	Obtain Interstate Shellfish Sanitation Conference (ISSC) approval for MARBIONC ELISA as the first non-mouse based method for testing for Neurotoxic Shellfish Poisoning (NSP) toxins in shellfish meats	Proposal for Limited use of MARBIONIC ELISA for NSP toxins in hard clams, sunray venus clams, oysters approved by ISSC; awaiting FDA concurrence before inclusion in National Shellfish Sanitation Program	Expand the list of species for which the ELISA method can be used, transfer this technology to appropriate end- users, and evaluate other methods of sample preparation and analysis for potential use in	NOA A	Quay Dortch quay.dortch@n oaa.gov	2020

Appendix 5. Actions to Expand Collaborations in Research, Management, and Policy-Related Arenas

		biotoxin management			
			110.4		
					Ongoing
		1	A		
-	in Sept. 2016.			oaa.gov	
6		January 2018.			
collaboration with USGS,					
USEPA, NRL, NASA,					
USACE, and BOEM.					
The group is working to (1)	All 12 states continue	A second point	USEP	Katie Flahive,	Ongoing
expand and encourage the	to update and	source measures	А,	flahive.katherin	
use of science-based nutrient	implement their state-	report and the first	USD	e@epa.gov	
management and other	level nutrient	nonpoint source	А,		
practices that help to reduce	reduction	report will be	DOI,		
nutrient losses; (2) identify	strategies. The HTF	published in the	USA		
	continues to engage	near-term.	CE		
share information; and (3)	with SERA-46, a				
create a network of leaders,	multi state Land				
including farmers, who	Grant University				
6	research and				
based nutrient losses. USGS,	extension committee				
other Federal Agencies, 12	to better understand				
6	knowledge gaps and				
,	share				
1					
River and the northern Gulf					
of Mexico.					
	1 '				
	exist, as well as				
	USACE, and BOEM. The group is working to (1) expand and encourage the use of science-based nutrient management and other practices that help to reduce nutrient losses; (2) identify opportunities for states to share information; and (3) create a network of leaders, including farmers, who strategize about agricultural- based nutrient losses. USGS, other Federal Agencies, 12 states, and a national tribal representative to address hypoxia in the Mississippi River and the northern Gulf	between researchers and stakeholders, and mechanism for advancing monitoring, research, and modeling needs critical to managing hypoxia. This project is a collaboration with USGS, USEPA, NRL, NASA, USACE, and BOEM. The group is working to (1) expand and encourage the use of science-based nutrient management and other practices that help to reduce nutrient losses; (2) identify opportunities for states to share information; and (3) create a network of leaders, including farmers, who strategize about agricultural- based nutrient losses. USGS, other Federal Agencies, 12 states, and a national tribal representative to address hypoxia in the Mississippi River and the northern Gulf of Mexico.	Forum for communication between researchers and stakeholders, and mechanism for advancing monitoring, research, and modeling needs critical to managing hypoxia. This project is a collaboration with USGS, USEPA, NRL, NASA, USACE, and BOEM.6th Annual Workshop completed in Sept. 2016.7th Manuary 2018.The group is working to (1) expand and encourage the use of science-based nutrient management and other practices that help to reduce nutrient losses; (2) identify opportunities for states to share information; and (3) create a network of leaders, including farmers, who strategize about agricultural- based nutrient losses. USGS, other Federal Agencies, 12 states, and a national tribal representative to address hypoxia in the Mississippi River and the northern Gulf of Mexico.All 12 states continue to update and implement their state- level nutrient reduction reduction reduction reduction research and extension committee to better understand knowledge gaps and share information. Farmer networks are in development, in addition to those thatA second point source report will be published in the near-term.	Forum for communication between researchers and stakeholders, and mechanism for advancing monitoring, research, and modeling needs critical to managing hypoxia. This project is a collaboration with USGS, USEPA, NRL, NASA, USACE, and BOEM.6th Annual Workshop completed in Sept. 2016.NOA Workshop scheduled for January 2018.NOA AThe group is working to (1) expand and encourage the use of science-based nutrient management and other practices that help to reduce nutrient losses; (2) identify opportunities for states to share information; and (3) create a network of leaders, including farmers, who strategize about agricultural- based nutrient losses. USGS, other Federal Agencies, 12 states, and a national tribal representative to address hypoxia in the Mississippi River and the northern GulfAll 12 states continue to update and implement their state- reduction strategies. The HTF continues to engage with SERA-46, a multi state Land Grant University research and extension committee to better understand knowledge gaps and share information. Farmer networks are in development, in addition to those thatA second point source measures report will be published in the near-term.USEP A, cEVery and the northern Gulf of Mexico.Grant University research and extension committee information. Farmer networks are in development, in addition to those thatI addition to those that	Forum for communication between researchers and stakeholders, and mechanism for advancing monitoring, research, and modeling needs critical to managing hypoxia.6th Annual Workshop completed in Sept. 2016.7th Annual Workshop scheduled for January 2018.NOA A alan.lewitus@n oaa.govThis project is a collaboration with USGS, USEPA, NRL, NASA, USACE, and BOEM.All 12 states continue to update and implement their state- level nutrientA second point source measures report and the first nonpoint source to USD published in the nopoint source the suiti state Land including farmers, who states, and a national tribal states, and a national tribal states, and a national tribal representative to address hypoxia in the Mississippi River and the norther Gulf of Mexico.All 12 states continue to update and with SERA-46, a muti state Land fincluding farmers, who strategize about agricultural- based nutrient research and extension committee to better understand share information, Farmer networks are in development, in addition to those thatA second point strategies.USEP A, to ESEP A, to ESEP A, to DOI, published in the near-term.Katie Flahive, flahive.katherin e@epa.govstates, and a national tribal representative to address hypoxia in the Mississippi River and the norther GulfAll 12 states, and reture to those thatA second point states, and antional tribal shareUSA to better understand shareUSA to better understand shareI antional tribal to better understand shareKate second point returned the mother Gulfto better understand shareI anti

Ohio River Basin HABs Scientific	Collaboration among EPA, Ohio River Sanitation	networks for other conservation professionals across the basin. In November 2017, <u>the</u> <u>second biennial</u> <u>report to congress</u> <u>was published</u> , describing the actions that the federal, state and tribal members of the HTF are taking towards the goal. Year 1 of an ongoing project.	ORSANCO commissioners	USEP	Jim Lazorchak lazorchak.jim	Ongoing
Workgroup	Commission, universities, and drinking water utilities in	1 5	approved the formation of a		@epa.gov	
	the Ohio River basin to exchange information,		science workgroup to communicate			
	coordinate research and		and collaborate on			
	develop an Ohio River HABs watch web site.		HABs. First meeting to be held			
	watch web site.		in 2018.			
Great Lakes HABs	In partnership with the Great	The Great Lakes HABs	11	USG	Jon Hortness	Ongoing
Collaboratory	Lakes Commission to: (1)	Collaboratory was	information sharing	S	hortness@usgs.	
	establish the HABs	established in 2015.	will continue to be		gov	
	Collaboratory by identifying and engaging the appropriate	Numerous information- sharing opportunities	supported. Updates and additional			
	scientists and managers, (2)	have been provided	information are			
	develop a common	including in person	available on the			
	knowledge basis of current	meetings, special	web at:			
	science and science needs,	sessions at scientific	http://www.glc.org/			
	and (3) develop strategies for	meetings, conferences,	work/habs-			

transmitting key scientific	and a HABs State of	<u>collaboratory</u>		
information to managers and	the Science Webinar			
for getting management	series. Additional			
feedback to support science-	information is available			
based decisions.	on the web at:			
	http://www.glc.org/wor			
	k/habs-collaboratory			

Develop guidelines and tests for HAB toxins in drinking and recreational water, and improve toxin removal during water treatment.

Action	Goal/Purpose	Achievements to October 2017	Activities to be Completed	Agen cy	Point of Contact	Expected Date of Completi on
Water Treatment	The Water Treatment	Published November	N/A (complete)	USEP	Tom Waters	2016
Optimization for	Optimization for	2016		Α	Waters.Tom@epa.	
Cyanotoxins	Cyanotoxins document	https://www.epa.gov/			gov	
	supports public water	ground-water-and-				
	systems in developing	<u>drinking-</u>				
	monitoring and treatment	water/cyanotoxin-				
	optimization approaches for	tools-public-water-				
	cyanotoxins to achieve the	<u>systems</u>				
	best performance possible					
	from each treatment process.					
	It presents proactive					
	approaches for water					
	sampling and monitoring to					
	help public water systems					
	anticipate treatment needs					
	and to treat cyanotoxins in					
	drinking water. Information					
	is presented for treating					
	cyanotoxins using many					
	types of water treatment.					

Development of a	A series of four pilot CPEs	Three of four CPE	One more CPE site	USEP	Rick	2018
Comprehensive	will be conducted with	site visits completed	visit is scheduled	Α	Lieberman	
Performance	selected Ohio surface water	as of September	for January 2018.		lieberman.richa	
Evaluation (CPE)	treatment plants, to support	2017.			rd@epa.gov	
assessment protocol	the development of a HAB					
for HAB-impacted	CPE assessment protocol for					
water treatment plants	HAB-impacted drinking					
in collaboration with	water treatment plants					
Ohio EPA	(WTPs). The assessment					
	protocol will evaluate WTPs					
	for potential factors limiting					
	water treatment performance					
	especially during HAB. Each					
	CPE will be conducted by a					
	team comprised of					
	representatives from (1)					
	EPA's Technical Support					
	Center (TSC) in Cincinnati;					
	(2) Ohio EPA; and (3)					
	Process Applications, Inc.					
	(PAI)a contractor for the					
	EPA drinking water					
	optimization program (called					
	the Area Wide Optimization					
	Program, or AWOP). The					
	CPE teams will focus on					
	water treatment plant design,					
	operations/maintenance, and					
	administration at each of the					
	four treatment plants to					
	optimize HAB control and					
	treatment. This project is a					
	collaboration with Ohio					

	EPA. The HAB CPE assessment protocol will be shared with other states and primacy agencies after completion of the pilot project.							
Optimizing the application of oxidants and powdered activated carbon during the early stages of the water treatment process	Examine two early-stage unit operations in the drinking water treatment process that offer the greatest potential for reducing the risk of toxin passage to consumers' drinking water taps	Year 3 project.	of	4-year	Completed laboratory work that evaluated the impacts of 3 different KMnO4 doses at two different pH levels and three different turbidities. Results have been submitted for peer review. Completed laboratory work to evaluate the impact of growth conditions, pH and initial suspension time on the propensity of cyanobacterial cells to release toxins upon exposure to KMnO4. Partial results have been presented at Ohio AWWA annual	USEPA	Nicholas Dugan dugan.nicholas @epa.gov	2019

			conference.			
Study on the removal of cyanotoxins from source waters using granular activated carbon	Evaluate the removal of cyanobacterial toxins by granular activated carbon (GAC) that has been pre- loaded with various concentrations of organic matter.	Year 3 of 3-year project.	Bench tests underway.	USEP A	Jonathan Pressman pressman.jonath an@epa.gov	2019

References

- Bingham, M., S.K. Sinha, and F. Lupi. Economic Benefits of Reducing Harmful Algal Blooms in Lake Erie. Environmental Consulting and Technology, Inc., Report. (2015). http://ijc.org/files/tinymce/uploaded/Publications/Economic-Benefits-Due-to-Reductionin-HABs-October-2015.pdf. Last accessed: April 25, 2017.
- Brooks, P., J. Chorover, S. Godsey. J. McNamara, C. Tague. "Hydrological Partitioning in the Critical Zone: Recent Advances and Opportunities for Developing Transferable Understanding of Water Cycle Dynamics." *Water Resources Research* 51(9/2015): 6973-6987.
- Byappanahalli, M., M. Fowler, D. Shively, R. Whitman. "Ubiquity and Persistence of *Escherichia coli* in a Midwestern Coastal Stream." *Applied Environmental Microbiology* 69(2003): 4549-4555. DOI: 10.1128/AEM.69.8.4549-4555.2003.
- Carmichael, W.W., and G.L. Boyer. "Health Impacts from Cyanobacteria Harmful Algae Blooms: Implications for the North American Great Lakes." *Harmful Algae* 54(2016): 194-212. DOI: https://doi.org/10.1016/j.hal.2016.02.002.
- Cavole, L.M., A.M. Demko, R.E. Diner, A. Giddings, I. Koester, C.M.L.S. Pagniello, M.-L. Paulsen, A. Ramirez-Valdez, S.M. Schwenck, N.K. Yen, M.E. Zill, and P.J.S. Franks. "Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future." *Oceanography* 29 (2/2016): 273-285. DOI: 10.5670/oceanog.2016.32.
- Correll, D.L. "The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review." *Journal of Environmental Quality*: 27(2/1998). DOI: 10.2134/jeq1998.00472425002700020004x.
- Foster, G.M. and J.L. Graham. "Logistic and Linear Regression Model Documentation for Statistical Relations Between Continuous Real-Time and Discrete Water-Quality Constituents in the Kansas River, Kansas, July 2012 through June 2015." U.S. Geological Survey Open-File Report 2016–1040. (2016). DOI:10.3133/ofr20161040. https://pubs.usgs.gov/of/2016/1040/ofr20161040.pdf. Last accessed: April 25, 2017.
- Foster, G.M., J.L. Graham, T.C. Stiles, M.G. Boyer, L.R. King, and K.A. Loftin. "Spatial Variability of Harmful Algal Blooms in Milford Lake, Kansas, July and August 2015." U.S. Geological survey Scientific Investigations report 2016-5168. (2017). https://doi.org/10.3133/sir20165168.
- Francy, D.S., A.M.G. Brady, C.D. Ecker, J.L. Graham, E.A. Stelzer, P. Struffolino, D.F. Dwyer, and K.A. Loftin "Estimating Microcystin Levels at Recreational Sites in Western Lake Erie and Ohio." *Harmful Algae* 58 (2016): 23-34. DOI: 10.1016/j.hal.2016.07.003.
- Geh, E., D. Ghosh, M. McKell, A. de la Cruz, G. Stelma, J.A. Bernstein. "Identification of *Microcystis aeruginosa* Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions Between Cyanobacterial Toxins and Immunogenic Peptides." *Environ Health Perspectives* 123(2015/11): 1159-1166. DOI:10.1289/ehp.1409065
- Graham, J.L., G.M. Foster, T.J. Williams, A.R. Kramer, and T.D. Harris. "Occurrence of Cyanobacteria, Microcystin, and Taste-and-Odor Compounds in Cheney Reservoir, Kansas, 2001–16: U.S. Geological Survey Scientific Investigations Report 2017–5016." (2017). https://doi.org/10.3133/sir20175016. https://pubs.usgs.gov/sir/2017/5016/sir20175016.pdf. Last accessed: April 25, 2017.

- Loftin, K.A., J.L. Graham, E.D. Hiborn, S.C. Lehmann, M.T. Meyer, J.E. Dietze, and C.B. Griffith. "Cyanotoxins of Inland Lakes of the United States--Occurrence and Potential Recreational Health Risks in the EPA National Lakes Assessment 2007." (2016). doi:10.1016/j.hal.2016.04.001.
- Michalak, A.M., E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloğlu, J.V. DePinto, M.A. Evans, G.L. Fahnenstiel, L. He, J.C. Ho, L. Jenkins, T.H. Johengen, K.C. Kuo, E. LaPorte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. Scavia, A.L. Steiner, E. Verhamme, D.M. Wright, and M.A. Zagorski. "Record-Setting Algal Bloom in Lake Erie Caused by Agricultural and Meteorological Trends Consistent with Expected Future Conditions." *Proceedings of the National Academy of Sciences of the United States of America* 110 (16/2013): 6448-6552. http://www.pnas.org/content/110/16/6448.full. Last accessed: April 25, 2017.
- Paerl, H.W. "Coastal Eutrophication and Harmful Algal Blooms: Importance of Atmospheric Deposition and Groundwater as 'New' Nitrogen and Other Source." *Limnology and Oceanography* 42 (2/1997): 1154-1165. http://onlinelibrary.wiley.com/doi/10.4319/lo.1997.42.5_part_2.1154/pdf. Last accessed: April 25, 2017.
- Paerl, H.W., J.J. Joyner, A.R. Joyner, K. Arthur, V. Paul, J.M. O'Neil, and C.A. Heil. "Co-Occurrence of Dinoflagellate and Cyanobacterial Harmful Algal Blooms in Southwest Florida Coastal Waters: Dual Nutrient (N and P) Input Controls." *Marine Ecology Progress Series* 371 (2008): 143-153. DOI: 10.3354/meps07681.
- United States Environmental Protection Agency (USEPA 2013). "Impacts of Climate Change on the Occurrence of Harmful Algal Blooms." EPA 820-S-12-001. (2013). http://www2.epa.gov/sites/production/files/documents/climatehabs.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2014). "Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems." EPA-810F11001. (2014). https://www.epa.gov/sites/production/files/2014-

08/documents/cyanobacteria_factsheet.pdf. Last accessed: April 25, 2017.

- United States Environmental Protection Agency (USEPA 2015a). "Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water." EPA 810R04003. (2015). https://www.epa.gov/sites/production/files/2015-11/documents/algal-risk-assessmentstrategic-plan-2015.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015b). "Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin." EPA 820R15101. (2015). http://www2.epa.gov/sites/production/files/2015-06/documents/cylindrospermopsinreport-2015.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015c). Drinking Water Health Advisory for the Cyanobacterial Toxin Microcystin. EPA 820R15100. Available online at: http://www2.epa.gov/sites/production/files/2015-06/documents/microcystins-report-2015.pdf
- United States Environmental Protection Agency (USEPA 2015d). "Health Effects Support Document for the Cyanobacterial Toxin Anatoxin-a." EPA 820R15104. (2015). https://www.epa.gov/sites/production/files/2015-06/documents/anatoxin-a-report-2015.pdf. Last accessed: April 25, 2017.

- United States Environmental Protection Agency (USEPA 2015e). "Health Effects Support Document for the Cyanobacterial Toxin Cylindrospermopsin." EPA 820R15103. (2015). http://www2.epa.gov/sites/production/files/2015-06/documents/cylindrospermopsinsupport-report-2015.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015f). "Health Effects Support Document for the Cyanobacterial Toxin Microcystins." EPA 820R15102. (2015). http://www2.epa.gov/sites/production/files/2015-06/documents/microcystins-supportreport-2015.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015g). "Method 544: Determination of Microcystins and Nodularin in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)." EPA/600/R-14/474. (2015). https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=306953. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015h). "Method 545: Determination of Cylindrospermopsin and Anatoxin-a in Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS)." EPA 815-R-15-009. (2015). https://www.epa.gov/sites/production/files/2015-11/documents/epa_815-r-15-009_method_545.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2015i). "Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water." EPA 815R15010. (2015). http://www.epa.gov/sites/production/files/2015-06/documents/cyanotoxin-management-drinking-water.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2016a). "Method 546: Determination of Total Microcystins and Nodularins in Drinking Water and Ambient Water by Adda Enzyme-Linked Immunosorbent Assay." EPA 815-B-16-011. (2016). https://www.epa.gov/sites/production/files/2016-09/documents/method-546-determination-total-microcystins-nodularins-drinking-water-ambient-water-adda-enzyme-linked-immunosorbent-assay.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2016b). "Cyanotoxin Management Plan Template and Example Plans." EPA 810-B-16-006. (2016). https://www.epa.gov/sites/production/files/2016-11/documents/cyanotoxins_management_plan_template_and_example_plans.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2016c). "Drinking Water Cyanotoxin Risk Communication Toolbox." (2016). https://www.epa.gov/ground-water-anddrinking-water/drinking-water-cyanotoxin-risk-communication-toolbox. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2016d). "Water Treatment Optimization for Cyanotoxins." EPA 810-B-16-007. (2016). https://www.epa.gov/sites/production/files/2016-11/documents/water_treatment_optimization_for_cyanotoxins.pdf. Last accessed: April 25, 2017.
- United States Environmental Protection Agency (USEPA 2016e). "Draft Human Health Recreational Ambient Water Quality Criteria and/or Swimming Advisories for Microcystins and Cylindrospermopsin.EPA 822-P-16-002. (2016).

https://www.epa.gov/sites/production/files/2016-12/documents/draft-hh-rec-ambient-water-swimming-document.pdf. Last accessed: February 26, 2018.

- United States Geological Survey. "Water Quality Watch -- Continuous Real-Time Water Quality of Surface Water in the United States, Real-Time Chlorophyll, in µg/l." (2017). https://waterwatch.usgs.gov/wqwatch/?pcode=65231. Last accessed: April 25, 2017.
- United States Government Accountability Office (GAO-17-119). "Environmental Protection: Information on Federal Agencies' Expenditures and Coordination Related to Harmful Algae." (2016). http://www.gao.gov/products/GAO-17-119.
- Zhang, J. "Atmospheric Wet Deposition of Nutrient Elements: Correlation with Harmful Biological Blooms in Northwest Pacific Coastal Zones." *Ambio* 23 (8/1994): 464-468.

Glossary of Terms

- Algae Simple plant-like, photosynthetic organisms that form the base of most aquatic food webs, ranging from microscopic, single-celled diatoms, dinoflagellates, and cyanobacteria, to large seaweeds.
- Aquatic Of, in, or pertaining to marine and fresh waters, including the Great Lakes, and concentrates herein on those in the US and its territories.
- **Best Management Practices** A method by which the adverse impacts of development and redevelopment are controlled through their application.
- **Clean Water Act** This act establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters (1948, 1972).
- **Cyanobacteria** Photosynthetic bacteria that frequently form harmful algal blooms in marine and fresh waters; also called blue-green algae.
- **Cyanotoxin** Toxins produced by cyanobacteria.

Dissolved oxygen – The amount of gaseous oxygen present in the water.

- **Drinking Water Protection Act** An amendment to the Safe Drinking Water Act to provide for the assessment and management of the risk of algal toxins in drinking water, and for other purposes.
- **Estuarine systems** (Estuaries) Systems that receive freshwater inputs from rivers, and that mix with ocean water.
- **Eutrophication** The enrichment of an ecosystem with chemical nutrients; typically compounds containing nitrogen, phosphorus, or both.
- **Food web** Also known as a food chain. The visual depiction of relationships between living things, what they feed on, and what feeds on them. For example: Little fish eat algae. Bigger fish eat the little fish. Humans eat the bigger fish.
- **Freshwater** Naturally-occurring water on the Earth's surface in ice sheets, ice caps, glaciers, icebergs, bogs, ponds, lakes, rivers and streams, and underground as groundwater in aquifers and underground streams. Freshwater salinity is less than 0.5 g/kg.
- **Harmful algal blooms (HABs)** A small subset of algal species including diatom, dinoflagellate, and cyanobacterial blooms that produce toxins or grow excessively, harming humans, other animals, and the environment. 93
- Hypoxia In reference to this report, waters that are, or have been, severely depleted of oxygen.

Hypoxic events – When a body of water experiences a deficiency of oxygen.

In situ – In the normal location.

- **Nuisance blooms** Excessive algal/cyanobacterial growth that can promote pathogens and cause detrimental effects like hypoxia, but that do not produce toxins.
- **Plankton** Diverse assemblage of organisms that live in the water column and cannot swim against a current.
- **Phytoplankton** Minute plant-like organisms and other photosynthetic organisms including cyanobacteria, diatoms, and dinoflagellates that live in water and cannot swim against a current.
- **Research Plan and Action Strategy** First report mandated by HABHRCA 2014. The Comprehensive HAB and Hypoxia Research Plan and Action Strategy will report on challenges related to HABs and hypoxia, ongoing and planned research, and the agencies' roles and responsibilities for evaluating and managing these issues.

- **Safe Drinking Water Act** Originally passed in 1974, the main Federal law that ensures the quality of Americans' drinking water. Under SDWA, EPA sets standards for drinking water quality and oversees the states, localities, and water suppliers who implement those standards.
- Salinity Dissolved salt content of a body of water expressed as grams salt per kilogram of water.
- **Upwell/upwelling** The process by which warm, less-dense surface water is drawn away from along a shore by offshore currents and replaced by cold, denser water brought up from the subsurface.